We show that there exists a positive constant C such that the following holds: Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n (depending on A), there is a need of at least Cn geometric progressions to cover the first n terms of A. A similar result is presented, with the role of arithmetic and geometric progressions reversed. © 2014 World Scientific Publishing Company.
Covering an arithmetic progression with geometric progressions and vice versa / Sanna, C.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 10:6(2014), pp. 1577-1582. [10.1142/S1793042114500456]
Titolo: | Covering an arithmetic progression with geometric progressions and vice versa | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S1793042114500456 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
covering.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Covering an arithmetic progression with geometric progressions and vice versa.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2789384