We show that there exists a positive constant C such that the following holds: Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n (depending on A), there is a need of at least Cn geometric progressions to cover the first n terms of A. A similar result is presented, with the role of arithmetic and geometric progressions reversed. © 2014 World Scientific Publishing Company.
Covering an arithmetic progression with geometric progressions and vice versa / Sanna, C.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 10:6(2014), pp. 1577-1582. [10.1142/S1793042114500456]
Covering an arithmetic progression with geometric progressions and vice versa
Sanna C.
2014
Abstract
We show that there exists a positive constant C such that the following holds: Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n (depending on A), there is a need of at least Cn geometric progressions to cover the first n terms of A. A similar result is presented, with the role of arithmetic and geometric progressions reversed. © 2014 World Scientific Publishing Company.File | Dimensione | Formato | |
---|---|---|---|
covering.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
254.49 kB
Formato
Adobe PDF
|
254.49 kB | Adobe PDF | Visualizza/Apri |
Covering an arithmetic progression with geometric progressions and vice versa.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
145 kB
Formato
Adobe PDF
|
145 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2789384