We show that there exists a positive constant C such that the following holds: Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n (depending on A), there is a need of at least Cn geometric progressions to cover the first n terms of A. A similar result is presented, with the role of arithmetic and geometric progressions reversed. © 2014 World Scientific Publishing Company.

Covering an arithmetic progression with geometric progressions and vice versa / Sanna, C.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 10:6(2014), pp. 1577-1582. [10.1142/S1793042114500456]

Covering an arithmetic progression with geometric progressions and vice versa

Sanna C.
2014

Abstract

We show that there exists a positive constant C such that the following holds: Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n (depending on A), there is a need of at least Cn geometric progressions to cover the first n terms of A. A similar result is presented, with the role of arithmetic and geometric progressions reversed. © 2014 World Scientific Publishing Company.
File in questo prodotto:
File Dimensione Formato  
covering.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 254.49 kB
Formato Adobe PDF
254.49 kB Adobe PDF Visualizza/Apri
Covering an arithmetic progression with geometric progressions and vice versa.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 145 kB
Formato Adobe PDF
145 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2789384