Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphene nanosheets is through molecular junctions, allowing covalently connecting nanosheets, otherwise interacting only via weak Van der Waals forces. Beside the bare existence of covalent connections, the choice of molecular structures to be used as thermal junctions should be guided by their vibrational properties, in terms of phonon transfer through the molecular junction. In this paper, density functional tight-binding combined with Green’s functions formalism was applied for the calculation of thermal conductance and phonon spectra of several different aliphatic and aromatic molecular junctions between graphene nanosheets. Effects of molecular junction length, conformation, and aromaticity were studied in detail and correlated with phonon tunnelling spectra. The theoretical insight provided by this work can guide future experimental studies to select suitable molecular junctions, in order to enhance the thermal transport by suppressing the interfacial thermal resistances. This is attractive for various systems, including graphene nanopapers and graphene polymer nanocomposites, as well as related devices. In a broader view, the possibility to design molecular junctions to control phonon transport currently appears as an efficient way to produce phononic devices and controlling heat management in nanostructures. [Figure not available: see fulltext.].
Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study / Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L. M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A.. - In: NANO RESEARCH. - ISSN 1998-0124. - STAMPA. - 12:4(2019), pp. 791-799. [10.1007/s12274-019-2290-2]
Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study
Martinez Gutierrez D.;Di Pierro A.;Bernal M.;Mortazavi B.;Saracco G.;Fina A.
2019
Abstract
Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphene nanosheets is through molecular junctions, allowing covalently connecting nanosheets, otherwise interacting only via weak Van der Waals forces. Beside the bare existence of covalent connections, the choice of molecular structures to be used as thermal junctions should be guided by their vibrational properties, in terms of phonon transfer through the molecular junction. In this paper, density functional tight-binding combined with Green’s functions formalism was applied for the calculation of thermal conductance and phonon spectra of several different aliphatic and aromatic molecular junctions between graphene nanosheets. Effects of molecular junction length, conformation, and aromaticity were studied in detail and correlated with phonon tunnelling spectra. The theoretical insight provided by this work can guide future experimental studies to select suitable molecular junctions, in order to enhance the thermal transport by suppressing the interfacial thermal resistances. This is attractive for various systems, including graphene nanopapers and graphene polymer nanocomposites, as well as related devices. In a broader view, the possibility to design molecular junctions to control phonon transport currently appears as an efficient way to produce phononic devices and controlling heat management in nanostructures. [Figure not available: see fulltext.].File | Dimensione | Formato | |
---|---|---|---|
Final version arxiv.pdf
Open Access dal 26/02/2021
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.01 MB
Formato
Adobe PDF
|
3.01 MB | Adobe PDF | Visualizza/Apri |
MartinezGutierrez2019_Article_ThermalBridgingOfGrapheneNanos.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2788637