The most recent advancements of the research activity that has been carried out at the Polytechnic University of Turin since the 1990s are presented, with a focus on the design approaches which can be adopted for the optimisation of the engineered clay barriers that are used as a part of the composite liners of solid waste landfills. A particular attention is devoted to the characterisation of the geosynthetic clay liners (GCLs) in terms of their microstructural features and semipermeable properties, which affect both the liquid and contaminant transport and the swelling–shrinking behaviour upon a variation in the chemical and mechanical boundary conditions. In the first part of the paper, novel analytical solutions are derived in order to account for the influence of the chemico-osmotic counter-flow on the leakage rate through a lining system that consists of a geomembrane (GM) overlying a GCL, as well as for the effect of a variation in the GCL swelling pressure on the hydraulic transmissivity of the GM–GCL interface. In the second part of the paper, a steady-state analysis approach is proposed with the aim to include all the aforementioned phenomena in the assessment of the impact of contaminant migration through the landfill bottom liners on the groundwater quality, taking into account the presence of a natural attenuation layer between the GCL and the underlying aquifer.

From the design of bottom landfill liner systems to the impact assessment of contaminants on underlying aquifers / Guarena, N.; Dominijanni, A.; Manassero, M.. - In: INNOVATIVE INFRASTRUCTURE SOLUTIONS. - ISSN 2364-4176. - STAMPA. - 5:1(2020), pp. 1-13. [10.1007/s41062-019-0251-y]

From the design of bottom landfill liner systems to the impact assessment of contaminants on underlying aquifers

Guarena N.;Dominijanni A.;Manassero M.
2020

Abstract

The most recent advancements of the research activity that has been carried out at the Polytechnic University of Turin since the 1990s are presented, with a focus on the design approaches which can be adopted for the optimisation of the engineered clay barriers that are used as a part of the composite liners of solid waste landfills. A particular attention is devoted to the characterisation of the geosynthetic clay liners (GCLs) in terms of their microstructural features and semipermeable properties, which affect both the liquid and contaminant transport and the swelling–shrinking behaviour upon a variation in the chemical and mechanical boundary conditions. In the first part of the paper, novel analytical solutions are derived in order to account for the influence of the chemico-osmotic counter-flow on the leakage rate through a lining system that consists of a geomembrane (GM) overlying a GCL, as well as for the effect of a variation in the GCL swelling pressure on the hydraulic transmissivity of the GM–GCL interface. In the second part of the paper, a steady-state analysis approach is proposed with the aim to include all the aforementioned phenomena in the assessment of the impact of contaminant migration through the landfill bottom liners on the groundwater quality, taking into account the presence of a natural attenuation layer between the GCL and the underlying aquifer.
File in questo prodotto:
File Dimensione Formato  
Guarena_et_al_2020_Innovative_Infrastructure_Solutions.pdf

accesso riservato

Descrizione: Articolo completo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Guarena_et_al_2020_Innovative_Infrastructure_Solutions_postprint.pdf

Open Access dal 26/11/2020

Descrizione: Versione finale senza layout editoriale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 726.47 kB
Formato Adobe PDF
726.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2788276