Biochar obtained from sewage sludges are adopted for biogas cleaning. Sewage sludges are treated considering temperature, dwell time, activating agent, heating, and flow rate. The best performances achieved are registered considering the char produced at 400 °C using CO2 as an activating agent with a dwell time of 2 h. The adsorption capacity for the biogas cleaning CH4/CO2/H2S (20 ppm(v)) increased from 1.3 mg/g to 5.9 mg/g with the bed height. Future research with chemical activation processes will be made to improve the adsorption capacity achieved to produce cheaper sorbents than commercial ones.

H2S Removal with Sorbent Obtained from Sewage Sludges / Papurello, Davide; Lanzini, Andrea; Bressan, Maurizio; Santarelli, Massimo. - In: PROCESSES. - ISSN 2227-9717. - ELETTRONICO. - 8:(2020), pp. 130-141. [10.3390/pr8020130]

H2S Removal with Sorbent Obtained from Sewage Sludges

Davide Papurello;Andrea Lanzini;Maurizio Bressan;Massimo Santarelli
2020

Abstract

Biochar obtained from sewage sludges are adopted for biogas cleaning. Sewage sludges are treated considering temperature, dwell time, activating agent, heating, and flow rate. The best performances achieved are registered considering the char produced at 400 °C using CO2 as an activating agent with a dwell time of 2 h. The adsorption capacity for the biogas cleaning CH4/CO2/H2S (20 ppm(v)) increased from 1.3 mg/g to 5.9 mg/g with the bed height. Future research with chemical activation processes will be made to improve the adsorption capacity achieved to produce cheaper sorbents than commercial ones.
2020
File in questo prodotto:
File Dimensione Formato  
processes-08-00130.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2783472