In this letter, a comparative analysis is carried out between the mechanism of mode conversion in differential microstrip lines due to bend discontinuities on one side and trace asymmetry on the other side. With the help of equivalent modal circuits, a theoretical basis is provided for the idea to compensate the undesired common mode (CM), due to the presence of the bend, by intentionally designing asymmetric traces. As an application example, the proposed CM-reduction strategy is used in conjunction with another recently-presented wideband CM suppression filter for differential microstrip lines. It is shown that the proposed solution enhances the overall CM-reduction performance of the filter by some decibels, while preserving its transmission properties.
Compensating Mode Conversion Due to Bend Discontinuities Through Intentional Trace Asymmetry / Manfredi, Paolo. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - STAMPA. - (2019), pp. 1-5.
Compensating Mode Conversion Due to Bend Discontinuities Through Intentional Trace Asymmetry
manfredi paolo
2019
Abstract
In this letter, a comparative analysis is carried out between the mechanism of mode conversion in differential microstrip lines due to bend discontinuities on one side and trace asymmetry on the other side. With the help of equivalent modal circuits, a theoretical basis is provided for the idea to compensate the undesired common mode (CM), due to the presence of the bend, by intentionally designing asymmetric traces. As an application example, the proposed CM-reduction strategy is used in conjunction with another recently-presented wideband CM suppression filter for differential microstrip lines. It is shown that the proposed solution enhances the overall CM-reduction performance of the filter by some decibels, while preserving its transmission properties.File | Dimensione | Formato | |
---|---|---|---|
TEMC_Letter_Bend.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
jnl-20xx-TEMC-Letters-bend.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
809.31 kB
Formato
Adobe PDF
|
809.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2782216