Pump and treat (P&T) systems are still widely employed for the hydraulic containment of contaminated groundwater despite the fact that their usage is decreasing due to their high operational costs. A way to partially mitigate such costs, both in monetary and environmental terms, is to perform heat exchange (directly or with a heat pump) on the groundwater extracted by these systems, thus providing low-carbon and low-cost heating and/or cooling to buildings or industrial processes. This opportunity should be carefully evaluated in view of preserving (or even improving) the removal efficiency of the remediation process. Therefore, the heat exchange should be placed upstream or downstream of all treatments, or in an intermediate position, depending on the effect of water temperature change on the removal efficiency of each treatment step. This article provides an overview of such effects and is meant to serve as a starting reference for a case-by-case evaluation. Finally, the potentiality of geothermal use of P&T systems is assessed in the Italian contaminated Sites of National Interest (SIN), i.e., the 41 priority contaminated sites in Italy. At least 29 of these sites use pumping wells as hydraulic barriers or P&T systems. The total discharge rate treated by these plants exceeds 7000 m3/h and can potentially provide about 33 MW of heating and/or cooling power.

How Can We Make Pump and Treat Systems More Energetically Sustainable? / Casasso, Alessandro; Tosco, Tiziana; Bianco, Carlo; Bucci, Arianna; Sethi, Rajandrea. - In: WATER. - ISSN 2073-4441. - ELETTRONICO. - 12:1(2020), pp. 1-20. [10.3390/w12010067]

How Can We Make Pump and Treat Systems More Energetically Sustainable?

Casasso, Alessandro;Tosco, Tiziana;Bianco, Carlo;Bucci, Arianna;Sethi, Rajandrea
2020

Abstract

Pump and treat (P&T) systems are still widely employed for the hydraulic containment of contaminated groundwater despite the fact that their usage is decreasing due to their high operational costs. A way to partially mitigate such costs, both in monetary and environmental terms, is to perform heat exchange (directly or with a heat pump) on the groundwater extracted by these systems, thus providing low-carbon and low-cost heating and/or cooling to buildings or industrial processes. This opportunity should be carefully evaluated in view of preserving (or even improving) the removal efficiency of the remediation process. Therefore, the heat exchange should be placed upstream or downstream of all treatments, or in an intermediate position, depending on the effect of water temperature change on the removal efficiency of each treatment step. This article provides an overview of such effects and is meant to serve as a starting reference for a case-by-case evaluation. Finally, the potentiality of geothermal use of P&T systems is assessed in the Italian contaminated Sites of National Interest (SIN), i.e., the 41 priority contaminated sites in Italy. At least 29 of these sites use pumping wells as hydraulic barriers or P&T systems. The total discharge rate treated by these plants exceeds 7000 m3/h and can potentially provide about 33 MW of heating and/or cooling power.
2020
File in questo prodotto:
File Dimensione Formato  
2019_Casasso et al_WATER_P&T.pdf

accesso aperto

Descrizione: pdf dell'articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2778152