In this study, we reported the use of cellulose derived microstructured biochars for the production of reinforced plastics. Cel-lulose nanocrystals and wasted cottonfibers were used as cellulose template structures and converted into carbonaceous materials underpyrolytic conditions. Biochars particles were produced with the shape of deformed spheres or rods and dispersed into an epoxy matrixwith a loading ranging from 1 wt % to 10 wt %. Biochar-based composites showed remarkably elongation properties of up to 8.2% using2 wt % of carbonized cellulose nanocrystals and a very low friction coefficient of 0.22 using 10 wt % of carbonized cottonfibers
Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites / Bartoli, Mattia; Rosso, Carlo; Giorcelli, Mauro; Rovere, Massimo; Jagdale, Pravin; Tagliaferro, Alberto; Chae, Michael; Bressler, David C.. - In: JOURNAL OF APPLIED POLYMER SCIENCE. - ISSN 0021-8995. - ELETTRONICO. - 137:27(2020), pp. 1-8. [10.1002/app.48896]
Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites
Bartoli, Mattia;Rosso, Carlo;Giorcelli, Mauro;Rovere, Massimo;Jagdale, Pravin;Tagliaferro, Alberto;
2020
Abstract
In this study, we reported the use of cellulose derived microstructured biochars for the production of reinforced plastics. Cel-lulose nanocrystals and wasted cottonfibers were used as cellulose template structures and converted into carbonaceous materials underpyrolytic conditions. Biochars particles were produced with the shape of deformed spheres or rods and dispersed into an epoxy matrixwith a loading ranging from 1 wt % to 10 wt %. Biochar-based composites showed remarkably elongation properties of up to 8.2% using2 wt % of carbonized cellulose nanocrystals and a very low friction coefficient of 0.22 using 10 wt % of carbonized cottonfibers| File | Dimensione | Formato | |
|---|---|---|---|
| draft.docx Open Access dal 31/12/2020 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										60.95 kB
									 
										Formato
										Microsoft Word XML
									 | 60.95 kB | Microsoft Word XML | Visualizza/Apri | 
| app.48896-1.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										2.2 MB
									 
										Formato
										Adobe PDF
									 | 2.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2777312
			
		
	
	
	
			      	