Free-Floating Car-Sharing (FFCS) services are a flexible alternative to car ownership. These transportation services show highly dynamic usage both over different hours of the day, and across different city areas. In this work, we study the problem of predicting FFCS demand patterns—a problem of great importance to the adequate provisioning of the service. We tackle both the prediction of the demand (i) over time and (ii) over space. We rely on months of real FFCS rides in Vancouver, which constitute our ground truth. We enrich this data with detailed socio-demographic information obtained from large open-data repositories to predict usage patterns. Our aim is to offer a thorough comparison of several machine-learning algorithms in terms of accuracy and ease of training, and to assess the effectiveness of current state-of-the-art approaches to address the prediction problem. Our results show that it is possible to predict the future usage with relative errors down to 10%, while the spatial prediction can be estimated with relative errors of about 40%. Our study also uncovers the socio-demographic features that most strongly correlate with FFCS usage, providing interesting insights for providers interested in offering services in new regions.

On Car-Sharing Usage Prediction with Open Socio-Demographic Data / Cocca, Michele; Teixeira, Douglas; Vassio, Luca; Mellia, Marco; Almeida, Jussara M.; Couto da Silva, Ana Paula Couto da. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 9:1(2020), pp. 72-91. [10.3390/electronics9010072]

On Car-Sharing Usage Prediction with Open Socio-Demographic Data

Cocca, Michele;Vassio, Luca;Mellia, Marco;
2020

Abstract

Free-Floating Car-Sharing (FFCS) services are a flexible alternative to car ownership. These transportation services show highly dynamic usage both over different hours of the day, and across different city areas. In this work, we study the problem of predicting FFCS demand patterns—a problem of great importance to the adequate provisioning of the service. We tackle both the prediction of the demand (i) over time and (ii) over space. We rely on months of real FFCS rides in Vancouver, which constitute our ground truth. We enrich this data with detailed socio-demographic information obtained from large open-data repositories to predict usage patterns. Our aim is to offer a thorough comparison of several machine-learning algorithms in terms of accuracy and ease of training, and to assess the effectiveness of current state-of-the-art approaches to address the prediction problem. Our results show that it is possible to predict the future usage with relative errors down to 10%, while the spatial prediction can be estimated with relative errors of about 40%. Our study also uncovers the socio-demographic features that most strongly correlate with FFCS usage, providing interesting insights for providers interested in offering services in new regions.
2020
File in questo prodotto:
File Dimensione Formato  
electronics-09-00072.pdf

accesso aperto

Descrizione: versione finale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2777041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo