Al matrix nanocomposites are interestingly employed in the automotive, military, aerospace and electronics packaging industries. In this study, Graphene Nanoplatelets (GNPs) reinforced AlSi10Mg nanocomposites were produced via powder metallurgy. The effect of GNPs content on density, microstructure and mechanical characteristics of the AlSi10Mg/GNPs nanocomposites was investigated systematically. To this aim, AlSi10Mg/GNPs nanocomposites reinforced with 0.5, 1.0 and 2.0 wt.% of GNPs were produced by wet mixing method following by hot compaction at 600 ◦C. To evaluate the effect of GNPs on mechanical properties of the as-fabricated nanocomposite, Vickers hardness and tensile properties of composites analyzed at room temperature. According to the results, it was found that the fabrication of AlSi10Mg/GNPs nanocomposites is faced with several challenges such as agglomeration and non-uniform dispersion of GNPs that should be addressed to achieve the desirable thermal and mechanical properties. For instance, surprisingly, it is revealed that the mechanical and thermal properties of nanocomposites were deteriorated in the presence of a high quantity of GNPs (>1.0 wt.%), which can be attributed to the GNPs agglomeration and accordingly introduction of internal porosity in the nanocomposite. The relatively low fraction of GNPs can uniformly be dispersed in the matrix and improve the performance of the nanocomposite.

Development of novel alsi10mg based nanocomposites: Microstructure, thermal and mechanical properties / Moheimani, S. K.; Dadkhah, M.; Saboori, A.. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 9:9(2019), p. 1000. [10.3390/met9091000]

Development of novel alsi10mg based nanocomposites: Microstructure, thermal and mechanical properties

Dadkhah M.;Saboori A.
2019

Abstract

Al matrix nanocomposites are interestingly employed in the automotive, military, aerospace and electronics packaging industries. In this study, Graphene Nanoplatelets (GNPs) reinforced AlSi10Mg nanocomposites were produced via powder metallurgy. The effect of GNPs content on density, microstructure and mechanical characteristics of the AlSi10Mg/GNPs nanocomposites was investigated systematically. To this aim, AlSi10Mg/GNPs nanocomposites reinforced with 0.5, 1.0 and 2.0 wt.% of GNPs were produced by wet mixing method following by hot compaction at 600 ◦C. To evaluate the effect of GNPs on mechanical properties of the as-fabricated nanocomposite, Vickers hardness and tensile properties of composites analyzed at room temperature. According to the results, it was found that the fabrication of AlSi10Mg/GNPs nanocomposites is faced with several challenges such as agglomeration and non-uniform dispersion of GNPs that should be addressed to achieve the desirable thermal and mechanical properties. For instance, surprisingly, it is revealed that the mechanical and thermal properties of nanocomposites were deteriorated in the presence of a high quantity of GNPs (>1.0 wt.%), which can be attributed to the GNPs agglomeration and accordingly introduction of internal porosity in the nanocomposite. The relatively low fraction of GNPs can uniformly be dispersed in the matrix and improve the performance of the nanocomposite.
2019
File in questo prodotto:
File Dimensione Formato  
Final Published version.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2776943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo