This study aims to monitor the biological processes ongoing in a hydrocarbon polluted soil. The experiments were carried out at a laboratory scale by measuring the evolution of its geophysical electromagnetic parameters. Time-domain reflectometry (TDR) probes were used to measure dielectric permittivity and electrical conductivity in columns of sandy soil artificially contaminated with diesel oil (Voil/Vtot = 0.19). To provide aerobic conditions suitable for the growth of microorganisms, they were hydrated with Mineral Salt Medium for Bacteria. One mesocosm was aerated by injecting air from the bottom of the column, while the other had only natural aeration due to diffusion of air through the soil itself. The monitoring lasted 105 days. Geophysical measurements were supported by microbiological, gas chromatographic analyses, and scanning electron microscope (SEM) images. Air injection heavily influenced the TDR monitoring, probably due to the generation of air bubbles around the probe that interfered with the probe–soil coupling. Therefore, the measurement accuracy of geophysical properties was dramatically reduced in the aerated system, although biological analyses showed that aeration strongly supports microbial activity. In the non-aerated system, a slight (2%) linear decrease of dielectric permittivity was observed over time. Meanwhile, the electrical conductivity initially decreased, then increased from day 20 to day 45, then decreased again by about 30%. We compared these results with other researches in recent literature to explain the complex biological phenomena that can induce variations in electrical parameters in a contaminated soil matrix, from salt depletion to pore clogging.
Time-Domain Reflectometry (TDR) monitoring at a lab scale of aerobic biological processes in a soil contaminated by diesel oil / Vergnano, Andrea; Godio, Alberto; Raffa, CARLA MARIA; Chiampo, Fulvia; Bosco, Francesca; Ruffino, Barbara. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 9:24(2019), pp. 5487-5503. [10.3390/app9245487]
Time-Domain Reflectometry (TDR) monitoring at a lab scale of aerobic biological processes in a soil contaminated by diesel oil
Andrea Vergnano;Alberto Godio;Carla Maria Raffa;Fulvia Chiampo;Francesca Bosco;Barbara Ruffino
2019
Abstract
This study aims to monitor the biological processes ongoing in a hydrocarbon polluted soil. The experiments were carried out at a laboratory scale by measuring the evolution of its geophysical electromagnetic parameters. Time-domain reflectometry (TDR) probes were used to measure dielectric permittivity and electrical conductivity in columns of sandy soil artificially contaminated with diesel oil (Voil/Vtot = 0.19). To provide aerobic conditions suitable for the growth of microorganisms, they were hydrated with Mineral Salt Medium for Bacteria. One mesocosm was aerated by injecting air from the bottom of the column, while the other had only natural aeration due to diffusion of air through the soil itself. The monitoring lasted 105 days. Geophysical measurements were supported by microbiological, gas chromatographic analyses, and scanning electron microscope (SEM) images. Air injection heavily influenced the TDR monitoring, probably due to the generation of air bubbles around the probe that interfered with the probe–soil coupling. Therefore, the measurement accuracy of geophysical properties was dramatically reduced in the aerated system, although biological analyses showed that aeration strongly supports microbial activity. In the non-aerated system, a slight (2%) linear decrease of dielectric permittivity was observed over time. Meanwhile, the electrical conductivity initially decreased, then increased from day 20 to day 45, then decreased again by about 30%. We compared these results with other researches in recent literature to explain the complex biological phenomena that can induce variations in electrical parameters in a contaminated soil matrix, from salt depletion to pore clogging.File | Dimensione | Formato | |
---|---|---|---|
Vergnano 2019 TDR applsci-09-05487.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
5.33 MB
Formato
Adobe PDF
|
5.33 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2774572
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo