A primary issue in biomaterials science is to design materials with ad hoc properties, depending on the specific application. Among these properties, friction is recognized as a fundamental aspect characterizing materials for many practical purposes. Recently, new and unexpected frictional properties have been obtained by exploiting hierarchical multiscale structures, inspired by those observed in many biological systems. In order to understand the emergent frictional behavior of these materials at the macroscale, it is fundamental to investigate their hierarchical structure, spanning across different length scales. In this article, we introduce a statistical multiscale approach, based on a one-dimensional formulation of the spring-block model, in which friction is modeled at each hierarchical scale through the classical Amontons−Coulomb force with statistical dispersion on the friction coefficients of the microscopic components. By means of numerical simulations, we deduce the global statistical distributions of the elementary structure at micrometric scale and use them as input distributions for the simulations at the next scale levels. We thus study the influence of microscopic artificial patterning on macroscopic friction coefficients. We show that it is possible to tune the friction properties of a hierarchical surface and provide some insight on the mechanisms involved at different length scales
Hierarchical Spring-Block Model for Multiscale Friction Problems / Costagliola, G.; Bosia, F.; Pugno, N. M.. - In: ACS BIOMATERIALS SCIENCE & ENGINEERING. - ISSN 2373-9878. - 3:11(2017), pp. 2845-2852. [10.1021/acsbiomaterials.6b00709]
Hierarchical Spring-Block Model for Multiscale Friction Problems
Bosia F.;
2017
Abstract
A primary issue in biomaterials science is to design materials with ad hoc properties, depending on the specific application. Among these properties, friction is recognized as a fundamental aspect characterizing materials for many practical purposes. Recently, new and unexpected frictional properties have been obtained by exploiting hierarchical multiscale structures, inspired by those observed in many biological systems. In order to understand the emergent frictional behavior of these materials at the macroscale, it is fundamental to investigate their hierarchical structure, spanning across different length scales. In this article, we introduce a statistical multiscale approach, based on a one-dimensional formulation of the spring-block model, in which friction is modeled at each hierarchical scale through the classical Amontons−Coulomb force with statistical dispersion on the friction coefficients of the microscopic components. By means of numerical simulations, we deduce the global statistical distributions of the elementary structure at micrometric scale and use them as input distributions for the simulations at the next scale levels. We thus study the influence of microscopic artificial patterning on macroscopic friction coefficients. We show that it is possible to tune the friction properties of a hierarchical surface and provide some insight on the mechanisms involved at different length scalesFile | Dimensione | Formato | |
---|---|---|---|
2017_Costagliola_ACS_Biom.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Costagliola ACS postprint.pdf
accesso riservato
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2773501
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo