We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.
Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity / Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 36:1(2019), pp. 257-294. [10.1016/j.anihpc.2018.05.003]
Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity
Tentarelli Lorenzo
2019
Abstract
We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.File | Dimensione | Formato | |
---|---|---|---|
Carlone R., Correggi M., Tentarelli L., Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity, 2019.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
606.57 kB
Formato
Adobe PDF
|
606.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Nonlin_point_int_2D_AIHP-tex.pdf
non disponibili
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
601.06 kB
Formato
Adobe PDF
|
601.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2771916