We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.

Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity / Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 36:1(2019), pp. 257-294. [10.1016/j.anihpc.2018.05.003]

Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity

Tentarelli Lorenzo
2019

Abstract

We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.
File in questo prodotto:
File Dimensione Formato  
Carlone R., Correggi M., Tentarelli L., Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity, 2019.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 606.57 kB
Formato Adobe PDF
606.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Nonlin_point_int_2D_AIHP-tex.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 601.06 kB
Formato Adobe PDF
601.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2771916