Carrying on the discussion initiated in Dovetta and Tentarelli (Ground states of the L^2-critical NLS equation with localized nonlinearity on a tadpole graph, 2018. arXiv:1804.11107 [math.AP]), we investigate the existence of ground states of prescribed mass for the L^2-critical NonLinear Schrödinger Equation on noncompact metric graphs with localized nonlinearity. Precisely, we show that the existence (or nonexistence) of ground states mainly depends on a parameter called reduced critical mass, and then we discuss how the topological and metric features of the graphs affect such a parameter, establishing some relevant differences with respect to the case of the extended nonlinearity studied by Adami et al. (Commun Math Phys 352(1):387–406, 2017). Our results rely on a thorough analysis of the optimal constant of a suitable variant of the L 2 -critical Gagliardo–Nirenberg inequality.
L2 -critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features / Dovetta, Simone; Tentarelli, Lorenzo. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 58:3(2019). [10.1007/s00526-019-1565-5]
Titolo: | L2 -critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-019-1565-5 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Dovetta_Tentarelli_revised.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Dovetta S., Tentarelli L., L2-critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features, 2019.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2771912