Protein mechanical vibrations play a pivotal role in biological activity. In particular, lowfrequency (terahertz) modes are related to protein conformational changes, which represent the foundations for a correct protein functionality. Relying on the fact that such low-frequency motions involve large protein portions, thus modeling of local details is not necessary, coarse-grained models have proven their efficacy in capturing the essential dynamic behavior. In this paper, we show that a coarse-grained finite element space truss model is suitable for investigating protein vibrations. Hen egg-white lysozyme is selected as a case study and modal analysis is performed in order to investigate the protein dynamics; the influence of interaction cutoff values on optimal force constant, obtained vibrational frequencies and mode shapes is also explored. The validity of the structural model is demonstrated by comparing the calculated B-factors with the experimental ones. Moreover, from the methodology framework the truss model is shown to be consistent with the well-known anisotropic network model and this has been confirmed by the obtained results. The proposed truss model is then believed to be a simple yet powerful tool to investigate protein dynamics, and it could also be used to analyze conformational changes and protein stability from a Structural Mechanics viewpoint.
A finite-element-based coarse-grained model for global protein vibration / Scaramozzino, D.; Lacidogna, G.; Piana, G.; Carpinteri, A.. - In: MECCANICA. - ISSN 0025-6455. - STAMPA. - 54:13(2019), pp. 1927-1940. [10.1007/s11012-019-01037-9]
A finite-element-based coarse-grained model for global protein vibration
Scaramozzino D.;Lacidogna G.;Piana G.;Carpinteri A.
2019
Abstract
Protein mechanical vibrations play a pivotal role in biological activity. In particular, lowfrequency (terahertz) modes are related to protein conformational changes, which represent the foundations for a correct protein functionality. Relying on the fact that such low-frequency motions involve large protein portions, thus modeling of local details is not necessary, coarse-grained models have proven their efficacy in capturing the essential dynamic behavior. In this paper, we show that a coarse-grained finite element space truss model is suitable for investigating protein vibrations. Hen egg-white lysozyme is selected as a case study and modal analysis is performed in order to investigate the protein dynamics; the influence of interaction cutoff values on optimal force constant, obtained vibrational frequencies and mode shapes is also explored. The validity of the structural model is demonstrated by comparing the calculated B-factors with the experimental ones. Moreover, from the methodology framework the truss model is shown to be consistent with the well-known anisotropic network model and this has been confirmed by the obtained results. The proposed truss model is then believed to be a simple yet powerful tool to investigate protein dynamics, and it could also be used to analyze conformational changes and protein stability from a Structural Mechanics viewpoint.File | Dimensione | Formato | |
---|---|---|---|
Scaramozzino2019_Article_AFinite-element-basedCoarse-gr.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.9 MB
Formato
Adobe PDF
|
4.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Coarse-Grained Model_Manuscript.pdf
Open Access dal 22/08/2020
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2770755
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo