In the field of electrical machines, the actual research activities mainly focus on improving the energetic aspects; for this reason, new magnetic materials are currently investigated and proposed, supporting the design and production of magnetic cores. The innovative aspects are related to both hard and soft magnetic materials. In the case of permanent magnets, the use of NdFeB bonded magnets represents a good solution in place of ferrites. For what concerns the soft magnetic materials, the adoption of Soft Magnetic Composites (SMCs) cores permits significant advantages compared to the laminated sheets, such as complex geometries and reduced eddy currents losses. SMC materials are ferromagnetic grains covered with an insulating layer that can be of an organic or inorganic type. The proposed study focuses on the impact of the particle size and distribution on the final material properties. The original powder was cut into three different fractions, and different combinations have been prepared, varying the fractions percentages. The magnetic and energetic properties have been evaluated in different frequency ranges, thus ranking the best combinations. The best specimens were then tested to evaluate the mechanical performances. The preliminary results are promising, but deeper analysis and tests are required to refine the selection and evaluate the improvements against the original composition taken as a reference.

The effect of particle size on the core losses of soft magnetic composites / Poskovic, E.; Ferraris, L.; Franchini, F.; Grande, M. A.. - In: AIP ADVANCES. - ISSN 2158-3226. - ELETTRONICO. - 9:3(2019), p. 035224. [10.1063/1.5080079]

The effect of particle size on the core losses of soft magnetic composites

Poskovic E.;Ferraris L.;Franchini F.;Grande M. A.
2019

Abstract

In the field of electrical machines, the actual research activities mainly focus on improving the energetic aspects; for this reason, new magnetic materials are currently investigated and proposed, supporting the design and production of magnetic cores. The innovative aspects are related to both hard and soft magnetic materials. In the case of permanent magnets, the use of NdFeB bonded magnets represents a good solution in place of ferrites. For what concerns the soft magnetic materials, the adoption of Soft Magnetic Composites (SMCs) cores permits significant advantages compared to the laminated sheets, such as complex geometries and reduced eddy currents losses. SMC materials are ferromagnetic grains covered with an insulating layer that can be of an organic or inorganic type. The proposed study focuses on the impact of the particle size and distribution on the final material properties. The original powder was cut into three different fractions, and different combinations have been prepared, varying the fractions percentages. The magnetic and energetic properties have been evaluated in different frequency ranges, thus ranking the best combinations. The best specimens were then tested to evaluate the mechanical performances. The preliminary results are promising, but deeper analysis and tests are required to refine the selection and evaluate the improvements against the original composition taken as a reference.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2769892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo