Metro-Area networks are likely to create the right conditions for the deployment of few-mode transmission (FMT) due to limited metro distances and rapidly increasing metro traffic. To address the new network design problems arising with the adoption of FMT, integer linear programming (ILP) formulations have already been developed to optimally assign modulation formats, baud rates, and transmission modes to lightpaths, but these formulations lack scalability, especially when they incorporate accurate constraints to capture inter-modal coupling. In this paper, we propose a heuristic approach for the routing, modulation format, baud rate and spectrum allocation in FMT networks with arbitrary topology, accounting for inter-modal coupling and for distance-Adaptive reaches of few-mode (specifically, up to five modes) signals generated by either full multi-in multi-out (MIMO) or low-complexity MIMO transceivers and for two different switching scenarios (i.e., spatial full-joint and fractional-joint switching). In our illustrative numerical analysis, we first confirm the quasi-optimality of our heuristic by comparing it to the optimal ILP solutions, and then we use our heuristic to identify which switching scenario and FMT transceiver technology minimize spectrum occupation and transceiver costs, depending on the relative costs of transceiver equipment and dark fiber leasing.
Transceivers and Spectrum Usage Minimization in Few-Mode Optical Networks / Rottondi, C. E. M.; Martelli, P.; Boffi, P.; Tornatore, M.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - ELETTRONICO. - 37:16(2019), pp. 4030-4040. [10.1109/JLT.2019.2900852]
Transceivers and Spectrum Usage Minimization in Few-Mode Optical Networks
Rottondi C. E. M.;
2019
Abstract
Metro-Area networks are likely to create the right conditions for the deployment of few-mode transmission (FMT) due to limited metro distances and rapidly increasing metro traffic. To address the new network design problems arising with the adoption of FMT, integer linear programming (ILP) formulations have already been developed to optimally assign modulation formats, baud rates, and transmission modes to lightpaths, but these formulations lack scalability, especially when they incorporate accurate constraints to capture inter-modal coupling. In this paper, we propose a heuristic approach for the routing, modulation format, baud rate and spectrum allocation in FMT networks with arbitrary topology, accounting for inter-modal coupling and for distance-Adaptive reaches of few-mode (specifically, up to five modes) signals generated by either full multi-in multi-out (MIMO) or low-complexity MIMO transceivers and for two different switching scenarios (i.e., spatial full-joint and fractional-joint switching). In our illustrative numerical analysis, we first confirm the quasi-optimality of our heuristic by comparing it to the optimal ILP solutions, and then we use our heuristic to identify which switching scenario and FMT transceiver technology minimize spectrum occupation and transceiver costs, depending on the relative costs of transceiver equipment and dark fiber leasing.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Descrizione: postprint dell'autore
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri |
few mode.pdf
non disponibili
Descrizione: articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.93 MB
Formato
Adobe PDF
|
2.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2768652
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo