This paper deals with the application of the support vector machine (SVM) and the least-squares SVM regressions to the uncertainty quantification of complex systems with a high-dimensional parameter space. The above regression techniques are used to build accurate and compact surrogate models of the system responses from a limited set of training samples. The accuracy and the feasibility of the proposed modeling techniques are then investigated by comparing their results with the ones predicted by a sparse polynomial chaos expansion by considering two real-life problems with 8 and 30 random variables, respectively.

Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices with a Large Number of Parameters / Trinchero, R.; Larbi, M.; Torun, H. M.; Canavero, F. G.; Swaminathan, M.. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 7:(2019), pp. 4056-4066. [10.1109/ACCESS.2018.2888903]

Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices with a Large Number of Parameters

Trinchero R.;Larbi M.;Canavero F. G.;
2019

Abstract

This paper deals with the application of the support vector machine (SVM) and the least-squares SVM regressions to the uncertainty quantification of complex systems with a high-dimensional parameter space. The above regression techniques are used to build accurate and compact surrogate models of the system responses from a limited set of training samples. The accuracy and the feasibility of the proposed modeling techniques are then investigated by comparing their results with the ones predicted by a sparse polynomial chaos expansion by considering two real-life problems with 8 and 30 random variables, respectively.
2019
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

Descrizione: final paper version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri
08584446.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 10.83 MB
Formato Adobe PDF
10.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2768139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo