We study the derivation of second order macroscopic traffic models from kinetic descriptions. In particular, we recover the celebrated Aw-Rascle model as the hydrodynamic limit of an Enskog-type kinetic equation out of a precise characterisation of the microscopic binary interactions among the vehicles. Unlike other derivations available in the literature, our approach unveils the multiscale physics behind the Aw-Rascle model. This further allows us to generalise it to a new class of second order macroscopic models complying with the Aw-Rascle consistency condition, namely the fact that no wave should travel faster than the mean traffic flow.

The Aw-Rascle traffic model: Enskog-type kinetic derivation and generalisations / Dimarco, Giacomo; Tosin, Andrea. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 178:1(2020), pp. 178-210. [10.1007/s10955-019-02426-w]

The Aw-Rascle traffic model: Enskog-type kinetic derivation and generalisations

Andrea Tosin
2020

Abstract

We study the derivation of second order macroscopic traffic models from kinetic descriptions. In particular, we recover the celebrated Aw-Rascle model as the hydrodynamic limit of an Enskog-type kinetic equation out of a precise characterisation of the microscopic binary interactions among the vehicles. Unlike other derivations available in the literature, our approach unveils the multiscale physics behind the Aw-Rascle model. This further allows us to generalise it to a new class of second order macroscopic models complying with the Aw-Rascle consistency condition, namely the fact that no wave should travel faster than the mean traffic flow.
File in questo prodotto:
File Dimensione Formato  
dimarco_tosin-2020-JSP.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DgTa-Aw-Rascle_Enskog-R1.pdf

embargo fino al 09/05/2020

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2765934