The search for possible alternatives to traditional flame retardants (FRs) is pushing the academic and industrial communities towards the design of new products that exhibit low environmental impact and toxicity, notwithstanding high performances, when put in contact with a flame or exposed to an irradiative heat flux. In this context, in the last five to ten years, the suitability and eectiveness of some biomacromolecules and bio-sourced products with a specific chemical structure and composition as eective flame retardants for natural or synthetic textiles has been thoroughly explored at the lab-scale level. In particular, dierent proteins (such as whey proteins, caseins, and hydrophobins), nucleic acids and extracts from natural sources, even wastes and crops, have been selected and exploited for designing flame retardant finishing treatments for several fibers and fabrics. It was found that these biomacromolecules and bio-sourced products, which usually bear key elements (i.e., nitrogen, phosphorus, and sulphur) can be easily applied to textiles using standard impregnation/exhaustion methods or even the layer-by-layer technique; moreover, these “green” products are mostly responsible for the formation of a stable protective char (i.e., a carbonaceous residue), as a result of the exposure of the textile substrate to a heat flux or a flame. This review is aimed at summarizing the development and the recent progress concerning the utilization of biomacromolecules/bio-sourced products as eective flame retardants for dierent textile materials. Furthermore, the existing drawbacks and limitations of the proposed finishing approaches as well as some possible further advances will be considered.
Biomacromolecules and Bio-Sourced Products for the Design of Flame Retarded Fabrics: Current State of the Art and Future Perspectives / Malucelli, Giulio. - In: MOLECULES. - ISSN 1420-3049. - ELETTRONICO. - 24:20(2019), p. 3774. [10.3390/molecules24203774]
Biomacromolecules and Bio-Sourced Products for the Design of Flame Retarded Fabrics: Current State of the Art and Future Perspectives
Malucelli, Giulio
2019
Abstract
The search for possible alternatives to traditional flame retardants (FRs) is pushing the academic and industrial communities towards the design of new products that exhibit low environmental impact and toxicity, notwithstanding high performances, when put in contact with a flame or exposed to an irradiative heat flux. In this context, in the last five to ten years, the suitability and eectiveness of some biomacromolecules and bio-sourced products with a specific chemical structure and composition as eective flame retardants for natural or synthetic textiles has been thoroughly explored at the lab-scale level. In particular, dierent proteins (such as whey proteins, caseins, and hydrophobins), nucleic acids and extracts from natural sources, even wastes and crops, have been selected and exploited for designing flame retardant finishing treatments for several fibers and fabrics. It was found that these biomacromolecules and bio-sourced products, which usually bear key elements (i.e., nitrogen, phosphorus, and sulphur) can be easily applied to textiles using standard impregnation/exhaustion methods or even the layer-by-layer technique; moreover, these “green” products are mostly responsible for the formation of a stable protective char (i.e., a carbonaceous residue), as a result of the exposure of the textile substrate to a heat flux or a flame. This review is aimed at summarizing the development and the recent progress concerning the utilization of biomacromolecules/bio-sourced products as eective flame retardants for dierent textile materials. Furthermore, the existing drawbacks and limitations of the proposed finishing approaches as well as some possible further advances will be considered.File | Dimensione | Formato | |
---|---|---|---|
molecules-24-03774(1).pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
11.71 MB
Formato
Adobe PDF
|
11.71 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2761952
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo