Edge Computing is moving resources toward the network borders, thus enabling the deployment of a pool of new applications that benefit from the new distributed infrastructure. However, due to the heterogeneity of such applications, specific orchestration strategies need to be adopted for each deployment request. Each application can potentially require different optimization criteria and may prefer particular reactions upon the occurrence of the same event. This paper presents a Service- Defined approach for orchestrating cloud/edge services in a distributed fashion, where each application can define its own orchestration strategy by means of declarative statements, which are parsed into a Service-Defined Orchestrator (SDO). Moreover, to coordinate the coexistence of a variety of SDOs on the same infrastructure while preserving the resource assignment optimality, we present DRAGON, a Distributed Resource AssiGnment and OrchestratioN algorithm that seeks optimal partitioning of shared resources between different actors. We evaluate the advantages of our novel Service-Defined orchestration approach over some representative edge use cases, as well as measure convergence and performance of DRAGON on a prototype implementation, assessing the benefits compared to conventional orchestration approaches.
A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms / Castellano, Gabriele; Esposito, Flavio; Risso, FULVIO GIOVANNI OTTAVIO. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 16:4(2019), pp. 1404-1418. [10.1109/TNSM.2019.2941639]
A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms
Gabriele Castellano;Fulvio Risso
2019
Abstract
Edge Computing is moving resources toward the network borders, thus enabling the deployment of a pool of new applications that benefit from the new distributed infrastructure. However, due to the heterogeneity of such applications, specific orchestration strategies need to be adopted for each deployment request. Each application can potentially require different optimization criteria and may prefer particular reactions upon the occurrence of the same event. This paper presents a Service- Defined approach for orchestrating cloud/edge services in a distributed fashion, where each application can define its own orchestration strategy by means of declarative statements, which are parsed into a Service-Defined Orchestrator (SDO). Moreover, to coordinate the coexistence of a variety of SDOs on the same infrastructure while preserving the resource assignment optimality, we present DRAGON, a Distributed Resource AssiGnment and OrchestratioN algorithm that seeks optimal partitioning of shared resources between different actors. We evaluate the advantages of our novel Service-Defined orchestration approach over some representative edge use cases, as well as measure convergence and performance of DRAGON on a prototype implementation, assessing the benefits compared to conventional orchestration approaches.File | Dimensione | Formato | |
---|---|---|---|
19TNSM-Dragon.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri |
08839604.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2752663
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo