Traditional hydraulic servomechanisms for aircraft control surfaces are being gradually replaced by newer technologies, such as Electro-Mechanical Actuators (EMAs). Since field data about reliability of EMAs are not available due to their recent adoption, their failure modes are not fully understood yet; therefore, an effective prognostic tool could help detect incipient failures of the flight control system, in order to properly schedule maintenance interventions and replacement of the actuators. A twofold benefit would be achieved: Safety would be improved by avoiding the aircraft to fly with damaged components, and replacement of still functional components would be prevented, reducing maintenance costs. However, EMA prognostic presents a challenge due to the complexity and to the multi-disciplinary nature of the monitored systems. We propose a model-based fault detection and isolation (FDI) method, employing a Genetic Algorithm (GA) to identify failure precursors before the performance of the system starts being compromised. Four different failure modes are considered: dry friction, backlash, partial coil short circuit, and controller gain drift. The method presented in this work is able to deal with the challenge leveraging the system design knowledge in a more effective way than data-driven strategies, and requires less experimental data. To test the proposed tool, a simulated test rig was developed. Two numerical models of the EMA were implemented with different level of detail: A high fidelity model provided the data of the faulty actuator to be analyzed, while a simpler one, computationally lighter but accurate enough to simulate the considered fault modes, was executed iteratively by the GA. The results showed good robustness and precision, allowing the early identification of a system malfunctioning with few false positives or missed failures.https://susy.mdpi.

Model-Based Fault Detection and Identification for Prognostics of Electromechanical Actuators Using Genetic Algorithms / Dalla Vedova, Matteo D. L.; Germanà, Alfio; Berri, Pier Carlo; Maggiore, Paolo. - In: AEROSPACE. - ISSN 2226-4310. - ELETTRONICO. - 6:9(2019), pp. 1-15. [10.3390/aerospace6090094]

Model-Based Fault Detection and Identification for Prognostics of Electromechanical Actuators Using Genetic Algorithms

Dalla Vedova, Matteo D. L.;Germanà, Alfio;Berri, Pier Carlo;Maggiore, Paolo
2019

Abstract

Traditional hydraulic servomechanisms for aircraft control surfaces are being gradually replaced by newer technologies, such as Electro-Mechanical Actuators (EMAs). Since field data about reliability of EMAs are not available due to their recent adoption, their failure modes are not fully understood yet; therefore, an effective prognostic tool could help detect incipient failures of the flight control system, in order to properly schedule maintenance interventions and replacement of the actuators. A twofold benefit would be achieved: Safety would be improved by avoiding the aircraft to fly with damaged components, and replacement of still functional components would be prevented, reducing maintenance costs. However, EMA prognostic presents a challenge due to the complexity and to the multi-disciplinary nature of the monitored systems. We propose a model-based fault detection and isolation (FDI) method, employing a Genetic Algorithm (GA) to identify failure precursors before the performance of the system starts being compromised. Four different failure modes are considered: dry friction, backlash, partial coil short circuit, and controller gain drift. The method presented in this work is able to deal with the challenge leveraging the system design knowledge in a more effective way than data-driven strategies, and requires less experimental data. To test the proposed tool, a simulated test rig was developed. Two numerical models of the EMA were implemented with different level of detail: A high fidelity model provided the data of the faulty actuator to be analyzed, while a simpler one, computationally lighter but accurate enough to simulate the considered fault modes, was executed iteratively by the GA. The results showed good robustness and precision, allowing the early identification of a system malfunctioning with few false positives or missed failures.https://susy.mdpi.
2019
File in questo prodotto:
File Dimensione Formato  
aerospace-06-00094.pdf

accesso aperto

Descrizione: Paper - Final Version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 896.78 kB
Formato Adobe PDF
896.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2750432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo