A voltage reference based on MOSFETs operated under Zero Temperature Coefficient (ZTC) bias is proposed. The circuit operates in a power supply voltage range from 0.3V up to 1.2V and outputs three different reference voltages using Standard-VT (SVT), Low-VT (LVT), and Zero-VT (ZVT) MOS transistors biased near their ZTC point by a single PTAT current reference. Measurements on 15 circuit samples fabricated in a standard 0.13-µm CMOS process show a worst-case normalized standard deviation (σ/µ) of 3% (SVT), 5.1% (LVT) and 10.8% (ZVT) respectively with a 75% of confidence level. At the nominal supply voltage of 0.45 V, the measured effective temperature coefficients (TCeff) range from 140 to 200 ppm/oC over the full commercial temperature range. At room temperature (25oC), line sensitivity in the ZVT VR is just 1.3%/100mV, over the whole supply range. The proposed reference draws around 5 µW and occupies 0.014 mm2 of silicon area.
A 0.3-1.2V Schottky-Based CMOS ZTC Voltage Reference / Pedro, Toledo; Cordova, David; Klimach, Hamilton; Bampi, Sergio; Crovetti, PAOLO STEFANO. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. - STAMPA. - (2019). [10.1109/TCSII.2019.2932281]
A 0.3-1.2V Schottky-Based CMOS ZTC Voltage Reference
Pedro Toledo;Paolo Crovetti
2019
Abstract
A voltage reference based on MOSFETs operated under Zero Temperature Coefficient (ZTC) bias is proposed. The circuit operates in a power supply voltage range from 0.3V up to 1.2V and outputs three different reference voltages using Standard-VT (SVT), Low-VT (LVT), and Zero-VT (ZVT) MOS transistors biased near their ZTC point by a single PTAT current reference. Measurements on 15 circuit samples fabricated in a standard 0.13-µm CMOS process show a worst-case normalized standard deviation (σ/µ) of 3% (SVT), 5.1% (LVT) and 10.8% (ZVT) respectively with a 75% of confidence level. At the nominal supply voltage of 0.45 V, the measured effective temperature coefficients (TCeff) range from 140 to 200 ppm/oC over the full commercial temperature range. At room temperature (25oC), line sensitivity in the ZVT VR is just 1.3%/100mV, over the whole supply range. The proposed reference draws around 5 µW and occupies 0.014 mm2 of silicon area.File | Dimensione | Formato | |
---|---|---|---|
08782537.pdf
accesso aperto
Descrizione: Post-print non editoriale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2745652
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo