This study presents the application of different analytical and finite element (FE) models aimed at predicting the shear resistance of reinforced concrete (RC) and reinforced concrete-encased steel joist (HRCESJ) beams with inclined transversal reinforcement in moment resisting frames (MRFs). In particular, four analytical models are taken into account, two of them specifically conceived for HRCESJ beams in seismic area. The analytical models considered are Eurocode-2 model for the shear strength of RC beams; a variable-inclination stress-field approach; a strut-and-tie additive model and, finally, an analytical formulation in which the shear capacity depends on the number of pairs of inclined stirrups able to yield before concrete crushing. The models are validated against a large experimental and FE dataset covering a wide range of characteristic parameters of the beam typology. The results obtained are discussed in order to stress the influence of different key assumptions adopted in both FE and analytical approaches.
Shear models of Rc-encased steel joist beams in MRFs / Colajanni, P.; Mendola, L. L.; Monaco, A.. - In: INGEGNERIA SISMICA. - ISSN 0393-1420. - STAMPA. - 36:2(2019), pp. 14-30.
Shear models of Rc-encased steel joist beams in MRFs
Monaco A.
2019
Abstract
This study presents the application of different analytical and finite element (FE) models aimed at predicting the shear resistance of reinforced concrete (RC) and reinforced concrete-encased steel joist (HRCESJ) beams with inclined transversal reinforcement in moment resisting frames (MRFs). In particular, four analytical models are taken into account, two of them specifically conceived for HRCESJ beams in seismic area. The analytical models considered are Eurocode-2 model for the shear strength of RC beams; a variable-inclination stress-field approach; a strut-and-tie additive model and, finally, an analytical formulation in which the shear capacity depends on the number of pairs of inclined stirrups able to yield before concrete crushing. The models are validated against a large experimental and FE dataset covering a wide range of characteristic parameters of the beam typology. The results obtained are discussed in order to stress the influence of different key assumptions adopted in both FE and analytical approaches.File | Dimensione | Formato | |
---|---|---|---|
Colajanni et al_2019_Ingegneria Sismica.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2744872
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo