Nano-crystalline cobalt spinel was prepared by combustion synthesis and used as ammonia sensing material. After synthesis, the powder was calcined at 600 °C for 4 h and characterized by thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray Photoelectron Spectroscopy, nitrogen adsorption (B.E.T, Brunauer, Emmet, Teller and B.J.H., Barrett, Joyner, Halenda techniques), H2 temperature programmed reduction, H2O adsorption and field emission scanning electron microscopy. Sensors were screen-printed onto α-alumina substrates with platinum interdigitated electrodes and fired at 700 °C for 1 h in air, after drying overnight. The sensor response was measured in the range 150 °C–250 °C under 1–50 ppm of NH3. Best results were obtained at 225 °C, with R (the ratio between the impedance of the film under gas exposure at the equilibrium and the impedance under dry air) equal to 1.83 under 50 ppm NH3. Response time and recovery time (e.g., the times taken by the sensor to attain 90% of total impedance change from its initial impedance value) were determined, together with cross-sensitivity tests towards CH4, CO, N2O, humidity, O3, CO2 and NO2 at the best operating temperature.

Ammonia selective sensors based on cobalt spinel prepared by combustion synthesis / Ziegler, Daniele; Marchisio, Andrea; Ercolino, Giuliana; Specchia, Stefania; Tulliani, JEAN MARC CHRISTIAN. - In: SOLID STATE IONICS. - ISSN 0167-2738. - ELETTRONICO. - 337:(2019), pp. 91-100. [10.1016/j.ssi.2019.03.026]

Ammonia selective sensors based on cobalt spinel prepared by combustion synthesis

Daniele Ziegler;Andrea Marchisio;Giuliana Ercolino;Stefania Specchia;Jean-Marc Tulliani
2019

Abstract

Nano-crystalline cobalt spinel was prepared by combustion synthesis and used as ammonia sensing material. After synthesis, the powder was calcined at 600 °C for 4 h and characterized by thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray Photoelectron Spectroscopy, nitrogen adsorption (B.E.T, Brunauer, Emmet, Teller and B.J.H., Barrett, Joyner, Halenda techniques), H2 temperature programmed reduction, H2O adsorption and field emission scanning electron microscopy. Sensors were screen-printed onto α-alumina substrates with platinum interdigitated electrodes and fired at 700 °C for 1 h in air, after drying overnight. The sensor response was measured in the range 150 °C–250 °C under 1–50 ppm of NH3. Best results were obtained at 225 °C, with R (the ratio between the impedance of the film under gas exposure at the equilibrium and the impedance under dry air) equal to 1.83 under 50 ppm NH3. Response time and recovery time (e.g., the times taken by the sensor to attain 90% of total impedance change from its initial impedance value) were determined, together with cross-sensitivity tests towards CH4, CO, N2O, humidity, O3, CO2 and NO2 at the best operating temperature.
File in questo prodotto:
File Dimensione Formato  
SSI_2019.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2738172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo