In the past few years, the rapid evolution of multi-constellation navigation satellite systems boosted the development of many scientific and engineering applications. More than 100 satellites will be available in a few years, when all the four global constellations (GPS, GLONASS, Galileo, and Beidou) will be fully deployed. This high number of visible satellites has improved the performance of precise point positioning (PPP) techniques both in terms of accuracy and of session length, especially easing the modeling of ionospheric biases. However, in the presence of severe environmental and atmospheric conditions, the performance of PPP considerably deteriorates. It is the case of high-latitude scenarios, where the satellites coverage is limited, the satellites geometry is poor and ionospheric scintillation are frequent. This paper analyzes the quality of PPP solutions in terms of accuracy and convergence time, for a GNSS station in Antarctica. Single and multi-constellation results are compared, proving the benefits of the availability of a higher number of satellites as well as the improved robustness to the presence of moderate and strong phase scintillations. The use of PPP multi-constellation at high latitudes is indeed essential to guarantee high accuracy, and to obtain a low convergence time, of the order of tens of minutes.
Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes / Dabove, P.; Linty, N.; Dovis, F.. - In: APPLIED GEOMATICS. - ISSN 1866-9298. - STAMPA. - (2020). [10.1007/s12518-019-00269-4]
Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes
Dabove P.;Linty N.;Dovis F.
2020
Abstract
In the past few years, the rapid evolution of multi-constellation navigation satellite systems boosted the development of many scientific and engineering applications. More than 100 satellites will be available in a few years, when all the four global constellations (GPS, GLONASS, Galileo, and Beidou) will be fully deployed. This high number of visible satellites has improved the performance of precise point positioning (PPP) techniques both in terms of accuracy and of session length, especially easing the modeling of ionospheric biases. However, in the presence of severe environmental and atmospheric conditions, the performance of PPP considerably deteriorates. It is the case of high-latitude scenarios, where the satellites coverage is limited, the satellites geometry is poor and ionospheric scintillation are frequent. This paper analyzes the quality of PPP solutions in terms of accuracy and convergence time, for a GNSS station in Antarctica. Single and multi-constellation results are compared, proving the benefits of the availability of a higher number of satellites as well as the improved robustness to the presence of moderate and strong phase scintillations. The use of PPP multi-constellation at high latitudes is indeed essential to guarantee high accuracy, and to obtain a low convergence time, of the order of tens of minutes.| File | Dimensione | Formato | |
|---|---|---|---|
| Dabove_PPP.pdf Open Access dal 22/05/2020 
											Descrizione: Post-print_draft
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										1.01 MB
									 
										Formato
										Adobe PDF
									 | 1.01 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2737432
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
