In the past few years, the rapid evolution of multi-constellation navigation satellite systems boosted the development of many scientific and engineering applications. More than 100 satellites will be available in a few years, when all the four global constellations (GPS, GLONASS, Galileo, and Beidou) will be fully deployed. This high number of visible satellites has improved the performance of precise point positioning (PPP) techniques both in terms of accuracy and of session length, especially easing the modeling of ionospheric biases. However, in the presence of severe environmental and atmospheric conditions, the performance of PPP considerably deteriorates. It is the case of high-latitude scenarios, where the satellites coverage is limited, the satellites geometry is poor and ionospheric scintillation are frequent. This paper analyzes the quality of PPP solutions in terms of accuracy and convergence time, for a GNSS station in Antarctica. Single and multi-constellation results are compared, proving the benefits of the availability of a higher number of satellites as well as the improved robustness to the presence of moderate and strong phase scintillations. The use of PPP multi-constellation at high latitudes is indeed essential to guarantee high accuracy, and to obtain a low convergence time, of the order of tens of minutes.

Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes / Dabove, P.; Linty, N.; Dovis, F.. - In: APPLIED GEOMATICS. - ISSN 1866-9298. - STAMPA. - (2019). [10.1007/s12518-019-00269-4]

Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes

Dabove P.;Linty N.;Dovis F.
2019

Abstract

In the past few years, the rapid evolution of multi-constellation navigation satellite systems boosted the development of many scientific and engineering applications. More than 100 satellites will be available in a few years, when all the four global constellations (GPS, GLONASS, Galileo, and Beidou) will be fully deployed. This high number of visible satellites has improved the performance of precise point positioning (PPP) techniques both in terms of accuracy and of session length, especially easing the modeling of ionospheric biases. However, in the presence of severe environmental and atmospheric conditions, the performance of PPP considerably deteriorates. It is the case of high-latitude scenarios, where the satellites coverage is limited, the satellites geometry is poor and ionospheric scintillation are frequent. This paper analyzes the quality of PPP solutions in terms of accuracy and convergence time, for a GNSS station in Antarctica. Single and multi-constellation results are compared, proving the benefits of the availability of a higher number of satellites as well as the improved robustness to the presence of moderate and strong phase scintillations. The use of PPP multi-constellation at high latitudes is indeed essential to guarantee high accuracy, and to obtain a low convergence time, of the order of tens of minutes.
File in questo prodotto:
File Dimensione Formato  
Dabove_PPP.pdf

Open Access dal 22/05/2020

Descrizione: Post-print_draft
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2737432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo