A hydrodynamic lubrication analysis for connecting rod big-end bearing is conducted. The effects of engine speed, operating condition, lubricant viscosity and oil temperature on tribological performance of big-end bearing have been examined. Force equilibrium is solved to define instantaneous eccentricity between journal and bearing to have accurate estimation of oil film thickness at interface of connecting rod big-end bearing and crankpin. Connecting rod big-end is treated as π film hydrodynamic journal bearing and finite difference scheme is applied to calculate generated hydrodynamic pressure and frictional power loss at each crank angle. Beside the development of analytical formulation, well-known Mobility model introduced by Booker has been employed to be compared with the analytical model. The presented analytical model reduces the complexity and the numerical effort with respect to Mobility method, thus shortening the computation time. The simulation results show good agreement between analytical model, Mobility approach and experimental data.

Numerical Study of Power Loss and Lubrication of Connecting Rod Big-End / Razavykia, Abbas; Delprete, Cristiana; Baldissera, Paolo. - In: LUBRICANTS. - ISSN 2075-4442. - ELETTRONICO. - 7:6(2019). [10.3390/lubricants7060047]

Numerical Study of Power Loss and Lubrication of Connecting Rod Big-End

Razavykia Abbas;Delprete Cristiana;Baldissera Paolo
2019

Abstract

A hydrodynamic lubrication analysis for connecting rod big-end bearing is conducted. The effects of engine speed, operating condition, lubricant viscosity and oil temperature on tribological performance of big-end bearing have been examined. Force equilibrium is solved to define instantaneous eccentricity between journal and bearing to have accurate estimation of oil film thickness at interface of connecting rod big-end bearing and crankpin. Connecting rod big-end is treated as π film hydrodynamic journal bearing and finite difference scheme is applied to calculate generated hydrodynamic pressure and frictional power loss at each crank angle. Beside the development of analytical formulation, well-known Mobility model introduced by Booker has been employed to be compared with the analytical model. The presented analytical model reduces the complexity and the numerical effort with respect to Mobility method, thus shortening the computation time. The simulation results show good agreement between analytical model, Mobility approach and experimental data.
2019
File in questo prodotto:
File Dimensione Formato  
lubricants-07-00047.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2735852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo