Metal-semiconductor interfaces play a crucial role not only for regulating the electronic conduction mechanism but also in determining new functionalities in nanosized devices. In this work, we reported the investigation of the junction properties of single ZnO NWs asymmetrically contacted by means of a Pt electrochemically inert and a Cu electrochemically active electrode. At low applied voltages, these devices operate as diodes where the conduction mechanism was found to be dominated by the Schottky barrier at the Cu/ZnO interface. Junction parameters such as the Schottky barrier height, the ideality factor and the series resistance have been analyzed according to the thermionic emission theory. Different methods for parameter retrieval from I-V-T measurements are discussed and compared. A potential fluctuation model is considered in order to account for barrier inhomogeneities, revealing the presence of two Gaussian distribution of barrier heigths. On the other hand, new device features arise from electrochemical dissolution and migration of Cu ions along the NW when high electric fields are implied. These electrochemical processes are underlaying the resistive switching and memristive behaviour observed in single ZnO NWs, as suggested also by direct observation of Cu nanoclusters along the nanostructures after the switching events.
Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts / Milano, Gianluca; Boarino, Luca; Ricciardi, Carlo. - In: NANOTECHNOLOGY. - ISSN 0957-4484. - ELETTRONICO. - 30:24(2019). [10.1088/1361-6528/ab0a9c]
Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts
Milano, Gianluca;Boarino, Luca;Ricciardi, Carlo
2019
Abstract
Metal-semiconductor interfaces play a crucial role not only for regulating the electronic conduction mechanism but also in determining new functionalities in nanosized devices. In this work, we reported the investigation of the junction properties of single ZnO NWs asymmetrically contacted by means of a Pt electrochemically inert and a Cu electrochemically active electrode. At low applied voltages, these devices operate as diodes where the conduction mechanism was found to be dominated by the Schottky barrier at the Cu/ZnO interface. Junction parameters such as the Schottky barrier height, the ideality factor and the series resistance have been analyzed according to the thermionic emission theory. Different methods for parameter retrieval from I-V-T measurements are discussed and compared. A potential fluctuation model is considered in order to account for barrier inhomogeneities, revealing the presence of two Gaussian distribution of barrier heigths. On the other hand, new device features arise from electrochemical dissolution and migration of Cu ions along the NW when high electric fields are implied. These electrochemical processes are underlaying the resistive switching and memristive behaviour observed in single ZnO NWs, as suggested also by direct observation of Cu nanoclusters along the nanostructures after the switching events.File | Dimensione | Formato | |
---|---|---|---|
2019_Nanotechnol_Junction properties of single ZnO nanowires with asymmetrical Pt andCu contacts.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2733964
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo