We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.
Spectral partitions for Sturm–Liouville problems / Tilli, Paolo; Zucco, Davide. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 150:4(2019), pp. 2155-2173.
Titolo: | Spectral partitions for Sturm–Liouville problems |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1017/prm.2019.1 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
tilli_zucco_spectral_partitions_for_sturm_liouville_problems.pdf | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Proceedings.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2733925