We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.

Spectral partitions for Sturm–Liouville problems / Tilli, Paolo; Zucco, Davide. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 150:4(2019), pp. 2155-2173. [10.1017/prm.2019.1]

Spectral partitions for Sturm–Liouville problems

Tilli, Paolo;Zucco, Davide
2019

Abstract

We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.
File in questo prodotto:
File Dimensione Formato  
tilli_zucco_spectral_partitions_for_sturm_liouville_problems.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 239.2 kB
Formato Adobe PDF
239.2 kB Adobe PDF Visualizza/Apri
Proceedings.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.2 MB
Formato Adobe PDF
4.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2733925