We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.
Spectral partitions for Sturm–Liouville problems / Tilli, Paolo; Zucco, Davide. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 150:4(2019), pp. 2155-2173. [10.1017/prm.2019.1]
Spectral partitions for Sturm–Liouville problems
Tilli, Paolo;Zucco, Davide
2019
Abstract
We look for best partitions of the unit interval that minimize certain functionals defined in terms of the eigenvalues of Sturm–Liouville problems. Via Γ-convergence theory, we study the asymptotic distribution of the minimizers as the number of intervals of the partition tends to infinity. Then we discuss several examples that fit in our framework, such as the sum of (positive and negative) powers of the eigenvalues and an approximation of the trace of the heat Sturm–Liouville operator.File | Dimensione | Formato | |
---|---|---|---|
tilli_zucco_spectral_partitions_for_sturm_liouville_problems.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
239.2 kB
Formato
Adobe PDF
|
239.2 kB | Adobe PDF | Visualizza/Apri |
Proceedings.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2733925