A tin-modified copper foam for the efficient and selective reduction of CO2 to CO is reported. We employ a cost-efficient electrodeposition route to form a three-dimensional porous dendrite architecture, in which each dendrite possesses a copper core and a copper oxide/tin oxide shell. The sparse tin species on the electrode surface play a key role to achieve excellent faradaic efficiencies for CO formation with a maximum value of 94%. We demonstrate high CO partial current densities of 4.7 mA cm−2 and 7.9 mA cm−2 at applied potentials of -0.8 V and -1.1 V vs. the reversible hydrogen electrode, respectively. The high activity for electrochemical CO2 reduction is attributed to the unique hierarchical porous structure, which offers abundant electrochemically active sites and facilitates mass transport.

Advanced Cu-Sn foam for selectively converting CO 2 to CO in aqueous solution / Zeng, Juqin; Bejtka, Katarzyna; Ju, Wenbo; Castellino, Micaela; Chiodoni, Angelica; Sacco, Adriano; Farkhondehfal, M. Amin; Hernández, Simelys; Rentsch, Daniel; Battaglia, Corsin; Pirri, Candido F.. - In: APPLIED CATALYSIS. B, ENVIRONMENTAL. - ISSN 0926-3373. - ELETTRONICO. - 236:(2018), pp. 475-482. [10.1016/j.apcatb.2018.05.056]

Advanced Cu-Sn foam for selectively converting CO 2 to CO in aqueous solution

Zeng, Juqin;Bejtka, Katarzyna;Castellino, Micaela;Chiodoni, Angelica;Sacco, Adriano;Farkhondehfal, M. Amin;Hernández, Simelys;Pirri, Candido F.
2018

Abstract

A tin-modified copper foam for the efficient and selective reduction of CO2 to CO is reported. We employ a cost-efficient electrodeposition route to form a three-dimensional porous dendrite architecture, in which each dendrite possesses a copper core and a copper oxide/tin oxide shell. The sparse tin species on the electrode surface play a key role to achieve excellent faradaic efficiencies for CO formation with a maximum value of 94%. We demonstrate high CO partial current densities of 4.7 mA cm−2 and 7.9 mA cm−2 at applied potentials of -0.8 V and -1.1 V vs. the reversible hydrogen electrode, respectively. The high activity for electrochemical CO2 reduction is attributed to the unique hierarchical porous structure, which offers abundant electrochemically active sites and facilitates mass transport.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0926337318304867-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2731032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo