A tin-modified copper foam for the efficient and selective reduction of CO2 to CO is reported. We employ a cost-efficient electrodeposition route to form a three-dimensional porous dendrite architecture, in which each dendrite possesses a copper core and a copper oxide/tin oxide shell. The sparse tin species on the electrode surface play a key role to achieve excellent faradaic efficiencies for CO formation with a maximum value of 94%. We demonstrate high CO partial current densities of 4.7 mA cm−2 and 7.9 mA cm−2 at applied potentials of -0.8 V and -1.1 V vs. the reversible hydrogen electrode, respectively. The high activity for electrochemical CO2 reduction is attributed to the unique hierarchical porous structure, which offers abundant electrochemically active sites and facilitates mass transport.
Advanced Cu-Sn foam for selectively converting CO 2 to CO in aqueous solution / Zeng, Juqin; Bejtka, Katarzyna; Ju, Wenbo; Castellino, Micaela; Chiodoni, Angelica; Sacco, Adriano; Farkhondehfal, M. Amin; Hernández, Simelys; Rentsch, Daniel; Battaglia, Corsin; Pirri, Candido F.. - In: APPLIED CATALYSIS. B, ENVIRONMENTAL. - ISSN 0926-3373. - ELETTRONICO. - 236:(2018), pp. 475-482. [10.1016/j.apcatb.2018.05.056]
Advanced Cu-Sn foam for selectively converting CO 2 to CO in aqueous solution
Zeng, Juqin;Bejtka, Katarzyna;Castellino, Micaela;Chiodoni, Angelica;Sacco, Adriano;Farkhondehfal, M. Amin;Hernández, Simelys;Pirri, Candido F.
2018
Abstract
A tin-modified copper foam for the efficient and selective reduction of CO2 to CO is reported. We employ a cost-efficient electrodeposition route to form a three-dimensional porous dendrite architecture, in which each dendrite possesses a copper core and a copper oxide/tin oxide shell. The sparse tin species on the electrode surface play a key role to achieve excellent faradaic efficiencies for CO formation with a maximum value of 94%. We demonstrate high CO partial current densities of 4.7 mA cm−2 and 7.9 mA cm−2 at applied potentials of -0.8 V and -1.1 V vs. the reversible hydrogen electrode, respectively. The high activity for electrochemical CO2 reduction is attributed to the unique hierarchical porous structure, which offers abundant electrochemically active sites and facilitates mass transport.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0926337318304867-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2731032
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo