In order to reduce blade resonant vibration amplitude in turbomachinery, blades are assembled with a mutual interlocking at the tip. The aim of this study is to investigate the wear mechanism at the contact interface of the blade shroud in steam turbines. Experimental data are available concerning the wear mechanism at interfaces of aircraft engines blades, while the literature regarding the same effect on steam turbines is less rich. Moreover, the transposition of the results from the aero-engine to the steam turbine is difficult, because materials and working conditions are different. To overcome this lack of knowledge an experimental campaign was set up to investigate this wear mechanism under the specific conditions and with the distinctive materials used in steam turbines. Two base materials (alloy steels) were tested under different conditions: surface treatment (with and without laser quenching), temperature and normal load. Dissipated energies were determined from the hysteresis loops measured during the tests and were correlated to the test conditions. Profiles of worn surfaces were measured, and volume losses were accurately computed with a procedure that takes into account the roughness of the surfaces. Experiments were conducted both at room and low temperature (150 °C). At room temperature the surface temperature increased to 60-70 °C, due to the heat generated in the wear process. Comparison of volume losses at room and low temperature showed that at 150°C the volume losses decreased dramatically. This behavior was explained with a brittle-ductile transition. In other words, the same wear mechanism, adhesion and abrasion respectively in stick and gross slip condition, give very different results for a small softening effect of the material. Moreover, experimental results showed much more sensitive wear rates to the heat treatment than to the steel type.

Fretting wear of alloy steels at the blade tip of steam turbines / Lavella, M.; Botto, D.. - In: WEAR. - ISSN 0043-1648. - STAMPA. - 426-427:(2019), pp. 735-740. [10.1016/j.wear.2019.01.039]

Fretting wear of alloy steels at the blade tip of steam turbines

Lavella, M.;Botto, D.
2019

Abstract

In order to reduce blade resonant vibration amplitude in turbomachinery, blades are assembled with a mutual interlocking at the tip. The aim of this study is to investigate the wear mechanism at the contact interface of the blade shroud in steam turbines. Experimental data are available concerning the wear mechanism at interfaces of aircraft engines blades, while the literature regarding the same effect on steam turbines is less rich. Moreover, the transposition of the results from the aero-engine to the steam turbine is difficult, because materials and working conditions are different. To overcome this lack of knowledge an experimental campaign was set up to investigate this wear mechanism under the specific conditions and with the distinctive materials used in steam turbines. Two base materials (alloy steels) were tested under different conditions: surface treatment (with and without laser quenching), temperature and normal load. Dissipated energies were determined from the hysteresis loops measured during the tests and were correlated to the test conditions. Profiles of worn surfaces were measured, and volume losses were accurately computed with a procedure that takes into account the roughness of the surfaces. Experiments were conducted both at room and low temperature (150 °C). At room temperature the surface temperature increased to 60-70 °C, due to the heat generated in the wear process. Comparison of volume losses at room and low temperature showed that at 150°C the volume losses decreased dramatically. This behavior was explained with a brittle-ductile transition. In other words, the same wear mechanism, adhesion and abrasion respectively in stick and gross slip condition, give very different results for a small softening effect of the material. Moreover, experimental results showed much more sensitive wear rates to the heat treatment than to the steel type.
2019
File in questo prodotto:
File Dimensione Formato  
WEAR2019_0273-Paper-r2.1.pdf

Open Access dal 11/04/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri
Fretting wear of alloy steels at the blade tip of steam turbines.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2730745
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo