This work is focused on the aerodynamic analysis of a small satellite provided with a deployable aerobrake. The satellite is intended to perform a completely aerodynamic de-orbiting maneuver from Low-EarthOrbit. A brief discussion about the aerodynamic effects of the position of the aero-brake along the longitudinal axis of a simplified axisymmetric system is presented. Moreover, a more complex architecture, envisaging deployable solar panels for the enhancement of power generation along the orbital path, is proposed and analyzed. The present paper is aimed at the evaluation of the influence of such a configuration on the satellite aerodynamic parameters. Computations have been carried out by means of a Direct Simulation Monte Carlo (DSMC) code at altitude of 150 km, velocity of 7800 m/s and in the interval of angle of attack 0-180 deg with a spacing of 10 deg. The results verified that the deployable solar panels strongly influence Aerodynamics of the satellite. One of the most relevant aspects is the variation of the longitudinal stability equilibrium that becomes more stable. Furthermore, the deployable solar panels increase the aerodynamic drag when the aero-brake is closed, affecting the drag modulation capability.

Effects of solar panels on Aerodynamics of a small satellite with deployable aerobrake / Stefano, Mungiguerra; Zuppardi, Gennaro; Savino, Raffaele; SPANO' CUOMO, Luca. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - ELETTRONICO. - 151:(2018), pp. 456-466. [10.1016/j.actaastro.2018.06.040]

Effects of solar panels on Aerodynamics of a small satellite with deployable aerobrake

Savino Raffaele;Spanò Cuomo Luca
2018

Abstract

This work is focused on the aerodynamic analysis of a small satellite provided with a deployable aerobrake. The satellite is intended to perform a completely aerodynamic de-orbiting maneuver from Low-EarthOrbit. A brief discussion about the aerodynamic effects of the position of the aero-brake along the longitudinal axis of a simplified axisymmetric system is presented. Moreover, a more complex architecture, envisaging deployable solar panels for the enhancement of power generation along the orbital path, is proposed and analyzed. The present paper is aimed at the evaluation of the influence of such a configuration on the satellite aerodynamic parameters. Computations have been carried out by means of a Direct Simulation Monte Carlo (DSMC) code at altitude of 150 km, velocity of 7800 m/s and in the interval of angle of attack 0-180 deg with a spacing of 10 deg. The results verified that the deployable solar panels strongly influence Aerodynamics of the satellite. One of the most relevant aspects is the variation of the longitudinal stability equilibrium that becomes more stable. Furthermore, the deployable solar panels increase the aerodynamic drag when the aero-brake is closed, affecting the drag modulation capability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2730248
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo