In this paper, a fully synthesizable digital-to-analog converter (DAC) is proposed. Based on a digital standard cell approach, the proposed DAC allows very low design effort, enables digital-like shrinkage across CMOS generations, low area at down-scaled technologies, and operation down to near-threshold voltages. The proposed DAC can operate at supply voltages that are significantly lower and/or at clock frequencies that are significantly greater than the intended design point, at the expense of moderate resolution degradation. In a 12-bit 40-nm testchip, graceful degradation of 0.3bit/100mV is achieved when V_DD is over-scaled down to 0.8V, and 1.4bit/100mV when further scaled down to 0.6V. The proposed DAC enables dynamic power-resolution tradeoff with 3X (2X) power saving for 1-bit resolution degradation at iso-sample rate (iso-resolution). A 12-bit DAC testchip designed with a fully automated standard cell flow in 40nm consumes 55µW at 27kS/s (9.1µW at 13.5kS/s) at a compact area of 500µm^2 and low voltage of 0.55V.
Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling / Aiello, Orazio; Crovetti, Paolo Stefano; Alioto, Massimo. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN 1549-8328. - STAMPA. - 66:8(2019), pp. 2865-2875. [10.1109/TCSI.2019.2903464]
Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling
Aiello, Orazio;Crovetti, Paolo Stefano;
2019
Abstract
In this paper, a fully synthesizable digital-to-analog converter (DAC) is proposed. Based on a digital standard cell approach, the proposed DAC allows very low design effort, enables digital-like shrinkage across CMOS generations, low area at down-scaled technologies, and operation down to near-threshold voltages. The proposed DAC can operate at supply voltages that are significantly lower and/or at clock frequencies that are significantly greater than the intended design point, at the expense of moderate resolution degradation. In a 12-bit 40-nm testchip, graceful degradation of 0.3bit/100mV is achieved when V_DD is over-scaled down to 0.8V, and 1.4bit/100mV when further scaled down to 0.6V. The proposed DAC enables dynamic power-resolution tradeoff with 3X (2X) power saving for 1-bit resolution degradation at iso-sample rate (iso-resolution). A 12-bit DAC testchip designed with a fully automated standard cell flow in 40nm consumes 55µW at 27kS/s (9.1µW at 13.5kS/s) at a compact area of 500µm^2 and low voltage of 0.55V.File | Dimensione | Formato | |
---|---|---|---|
08675955.pdf
accesso aperto
Descrizione: Post-print
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Visualizza/Apri |
Crovetti-Fully.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.71 MB
Formato
Adobe PDF
|
4.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2729747