Hydrated salt thermochemical energy storage (TES) is a promising technology for high density energy storage, in principle opening the way for applications in seasonal storage. However, severe limitations are affecting large scale applications, related to their poor thermal and mechanical stability on hydration/dehydration cycling. In this paper, we report the preparation and characterization of composite materials manufactured with a wet impregnation method using strontium bromide hexahydrate (SBH) as a thermochemical storage material, combined with expanded natural graphite (G). In addition to these fully inorganic formulations, an organic polyelectrolyte (PDAC, polydiallyldimethylammonium chloride) was exploited in the structure, with the aim to stabilize the salt, while contributing to the sorption/desorption process. Different formulations were prepared with varying PDAC concentration to study its contribution to material morphology, by electron microscopy and X-ray diffraction, as well as water sorption/desorption properties, by thermogravimetry and differential calorimetry. Furthermore, the SBH/G/PDAC powder mixture was pressed to form tabs that were analyzed in a climatic chamber, which is evidence for an active role of PDAC in the improvement of water sorption, coupled with a significant enhancement of mechanical resistance upon hydration/dehydration cycling. Therefore, the addition of the polyelectrolyte is proposed as an innovative approach in the fabrication of efficient and durable TES devices.
Hydrated Salt/Graphite/Polyelectrolyte Organic-Inorganic Hybrids for Efficient Thermochemical Storage / Salviati, Sergio; Carosio, Federico; Saracco, Guido; Fina, Alberto. - In: NANOMATERIALS. - ISSN 2079-4991. - 9:3(2019), p. 420. [10.3390/nano9030420]
Hydrated Salt/Graphite/Polyelectrolyte Organic-Inorganic Hybrids for Efficient Thermochemical Storage
Salviati, Sergio;Carosio, Federico;Saracco, Guido;Fina, Alberto
2019
Abstract
Hydrated salt thermochemical energy storage (TES) is a promising technology for high density energy storage, in principle opening the way for applications in seasonal storage. However, severe limitations are affecting large scale applications, related to their poor thermal and mechanical stability on hydration/dehydration cycling. In this paper, we report the preparation and characterization of composite materials manufactured with a wet impregnation method using strontium bromide hexahydrate (SBH) as a thermochemical storage material, combined with expanded natural graphite (G). In addition to these fully inorganic formulations, an organic polyelectrolyte (PDAC, polydiallyldimethylammonium chloride) was exploited in the structure, with the aim to stabilize the salt, while contributing to the sorption/desorption process. Different formulations were prepared with varying PDAC concentration to study its contribution to material morphology, by electron microscopy and X-ray diffraction, as well as water sorption/desorption properties, by thermogravimetry and differential calorimetry. Furthermore, the SBH/G/PDAC powder mixture was pressed to form tabs that were analyzed in a climatic chamber, which is evidence for an active role of PDAC in the improvement of water sorption, coupled with a significant enhancement of mechanical resistance upon hydration/dehydration cycling. Therefore, the addition of the polyelectrolyte is proposed as an innovative approach in the fabrication of efficient and durable TES devices.File | Dimensione | Formato | |
---|---|---|---|
nanomaterials-09-00420.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
5.14 MB
Formato
Adobe PDF
|
5.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2728922
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo