Chemical looping syngas production is a two-step redox cycle with oxygen carriers (metal oxides) circulating between two interconnected reactors. In this paper, the performance of pure CeO2/Ce2O3 redox pair was investigated for low-temperature syngas production via methane reduction together with identification of optimal ideal operating conditions. Comprehensive thermodynamic analysis for methane reduction and water and CO2 splitting was performed through process simulation by Gibbs free energy minimization in ASPEN Plus®. The reduction reactor was studied by varying the CH4/CeO2 molar ratio between 0.4 and 4 along with the temperature from 500 to 1000 °C. In the oxidation reactor, steam and carbon dioxide mixture oxidized the reduced metal back to CeO2, while producing simultaneous streams of CO and H2 respectively. Within the oxidation reactor, the flow and composition of the mixture gas were varied, together with reactor temperature between 500 and 1000 °C. The results indicate that the maximum CH4 conversion in the reduction reactor is achieved between 900 and 950 °C with CH4/CeO2 ratio of 0.7–0.8, while, for the oxidation reactor, the optimal condition can vary between 600 and 900 °C based on the requirement of the final product output (H2/CO). The system efficiency was around 62% for isothermal operations at 900 °C and complete redox reaction of the metal oxide.
Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation / Uddin, Azhar; Ferrero, Domenico. - In: MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY. - ISSN 2194-1459. - ELETTRONICO. - 8:5(2019), pp. 1-15. [10.1007/s40243-019-0142-3]
Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation
Azharuddin xxx;FERRERO, DOMENICO
2019
Abstract
Chemical looping syngas production is a two-step redox cycle with oxygen carriers (metal oxides) circulating between two interconnected reactors. In this paper, the performance of pure CeO2/Ce2O3 redox pair was investigated for low-temperature syngas production via methane reduction together with identification of optimal ideal operating conditions. Comprehensive thermodynamic analysis for methane reduction and water and CO2 splitting was performed through process simulation by Gibbs free energy minimization in ASPEN Plus®. The reduction reactor was studied by varying the CH4/CeO2 molar ratio between 0.4 and 4 along with the temperature from 500 to 1000 °C. In the oxidation reactor, steam and carbon dioxide mixture oxidized the reduced metal back to CeO2, while producing simultaneous streams of CO and H2 respectively. Within the oxidation reactor, the flow and composition of the mixture gas were varied, together with reactor temperature between 500 and 1000 °C. The results indicate that the maximum CH4 conversion in the reduction reactor is achieved between 900 and 950 °C with CH4/CeO2 ratio of 0.7–0.8, while, for the oxidation reactor, the optimal condition can vary between 600 and 900 °C based on the requirement of the final product output (H2/CO). The system efficiency was around 62% for isothermal operations at 900 °C and complete redox reaction of the metal oxide.File | Dimensione | Formato | |
---|---|---|---|
Bose2019_Article_ThermodynamicAssessmentOfNon-c.pdf
accesso aperto
Descrizione: Published paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
4.43 MB
Formato
Adobe PDF
|
4.43 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2726673
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo