The magnetic properties of sintered Mn-Zn ferrites, Co 2+ enriched by addition of CoO up to 6000 ppm, were measured in ring samples for a broad range of peak polarization values (2-200 mT) and frequencies (dc - 1 GHz). The results were analyzed by separating the contributions to the magnetization process of domain wall motion and magnetization rotation, and applying the concept of loss decomposition. By determining the value and behavior of the rotational permeability μ rot as a function of the CoO content, we obtain the average effective magnetic anisotropy <;K> and its effect on the loss. We thus identify the hysteresis (quasi-static) Wh, rotational Wrot, and excess W exc loss components and their dependence on CoO. The quasi-static loss W h , the domain wall permeability μ dw , and <;K> have minima, and μ rot has a maximum, for CoO in the range 3000-4000 ppm. The rotational loss by spin damping Wrot,sd is calculated by use of the Landau-Lifshitz equation by assuming distributed anisotropy field amplitudes. Wrot,sd covers the experimental loss behavior beyond about 1 MHz. Wexc and Wh, both directly generated by the moving domain walls, share the dissipative response of the material at lower frequencies and show similar trends versus CoO content. It is concluded that the modulation of the magnetic anisotropy of Mn-Zn ferrites through Co 2+ enrichment, leading to maximum magnetic softening for CoO in the range 3000-4000 ppm, can be assessed in terms of separate effects of domain wall motion and moment rotations and their related dissipative properties.

Magnetic loss decomposition in Co-Doped Mn-Zn ferrites / Dobak, Samuel; Beatrice, Cinzia; Fiorillo, Fausto; Tsakaloudi, Vasiliki; Ragusa, Carlo. - In: IEEE MAGNETICS LETTERS. - ISSN 1949-307X. - STAMPA. - 10:(2019), pp. 1-5. [10.1109/LMAG.2018.2881108]

Magnetic loss decomposition in Co-Doped Mn-Zn ferrites

Ragusa, Carlo
2019

Abstract

The magnetic properties of sintered Mn-Zn ferrites, Co 2+ enriched by addition of CoO up to 6000 ppm, were measured in ring samples for a broad range of peak polarization values (2-200 mT) and frequencies (dc - 1 GHz). The results were analyzed by separating the contributions to the magnetization process of domain wall motion and magnetization rotation, and applying the concept of loss decomposition. By determining the value and behavior of the rotational permeability μ rot as a function of the CoO content, we obtain the average effective magnetic anisotropy <;K> and its effect on the loss. We thus identify the hysteresis (quasi-static) Wh, rotational Wrot, and excess W exc loss components and their dependence on CoO. The quasi-static loss W h , the domain wall permeability μ dw , and <;K> have minima, and μ rot has a maximum, for CoO in the range 3000-4000 ppm. The rotational loss by spin damping Wrot,sd is calculated by use of the Landau-Lifshitz equation by assuming distributed anisotropy field amplitudes. Wrot,sd covers the experimental loss behavior beyond about 1 MHz. Wexc and Wh, both directly generated by the moving domain walls, share the dissipative response of the material at lower frequencies and show similar trends versus CoO content. It is concluded that the modulation of the magnetic anisotropy of Mn-Zn ferrites through Co 2+ enrichment, leading to maximum magnetic softening for CoO in the range 3000-4000 ppm, can be assessed in terms of separate effects of domain wall motion and moment rotations and their related dissipative properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2726075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo