In recent years, the diffusion of large image datasets and an unprecedented computational power have boosted the development of a class of artificial intelligence (AI) algorithms referred to as deep learning (DL). Among DL methods, convolutional neural networks (CNNs) have proven particularly effective in computer vision, finding applications in many disciplines. This paper introduces a project aimed at studying CNN techniques in the field of architectural heritage, a still to be developed research stream. The first steps and results in the development of a mobile app to recognize monuments are discussed. While AI is just beginning to interact with the built environment through mobile devices, heritage technologies have long been producing and exploring digital models and spatial archives. The interaction between DL algorithms and state-of-the-art information modeling is addressed, as an opportunity to both exploit heritage collections and optimize new object recognition techniques.
Towards deep learning for architecture: a monument recognition mobile app / Palma, Valerio. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 2194-9034. - ELETTRONICO. - XLII-2/W9:(2019), pp. 551-556. [10.5194/isprs-archives-XLII-2-W9-551-2019]
Towards deep learning for architecture: a monument recognition mobile app
Valerio Palma
2019
Abstract
In recent years, the diffusion of large image datasets and an unprecedented computational power have boosted the development of a class of artificial intelligence (AI) algorithms referred to as deep learning (DL). Among DL methods, convolutional neural networks (CNNs) have proven particularly effective in computer vision, finding applications in many disciplines. This paper introduces a project aimed at studying CNN techniques in the field of architectural heritage, a still to be developed research stream. The first steps and results in the development of a mobile app to recognize monuments are discussed. While AI is just beginning to interact with the built environment through mobile devices, heritage technologies have long been producing and exploring digital models and spatial archives. The interaction between DL algorithms and state-of-the-art information modeling is addressed, as an opportunity to both exploit heritage collections and optimize new object recognition techniques.File | Dimensione | Formato | |
---|---|---|---|
isprs-archives-XLII-2-W9-551-2019.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2725490
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo