We study the Morse index of self-shrinkers for the mean curvature flow and, more generally, of f-minimal hypersurfaces in a weighted Euclidean space endowed with a convex weight. When the hypersurface is compact, we show that the index is bounded from below by an affine function of its first Betti number. When the first Betti number is large, this improves index estimates known in literature. In the complete non-compact case, the lower bound is in terms of the dimension of the space of weighted square summable f-harmonic 1-forms; in particular, in dimension 2, the procedure gives an index estimate in terms of the genus of the surface
Index and first Betti number of f-minimal hypersurfaces and self-shrinkers / Impera, Debora; Rimoldi, Michele; Savo, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 36:3(2020), pp. 817-840. [10.4171/rmi/1150]
Index and first Betti number of f-minimal hypersurfaces and self-shrinkers
Debora Impera;Michele Rimoldi;
2020
Abstract
We study the Morse index of self-shrinkers for the mean curvature flow and, more generally, of f-minimal hypersurfaces in a weighted Euclidean space endowed with a convex weight. When the hypersurface is compact, we show that the index is bounded from below by an affine function of its first Betti number. When the first Betti number is large, this improves index estimates known in literature. In the complete non-compact case, the lower bound is in terms of the dimension of the space of weighted square summable f-harmonic 1-forms; in particular, in dimension 2, the procedure gives an index estimate in terms of the genus of the surfaceFile | Dimensione | Formato | |
---|---|---|---|
ImperaRimoldiSavo_IndexfMin_ToApp.pdf
accesso aperto
Descrizione: Articolo pricipale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
285.98 kB
Formato
Adobe PDF
|
285.98 kB | Adobe PDF | Visualizza/Apri |
RMI-2019-1150.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
314.1 kB
Formato
Adobe PDF
|
314.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2723274