This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials.An original glass has been formulated in the base system MgO-Al2O3-SiO2 with addition of B2O3 and Na2O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA). Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD). Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sintercrystallizationprocess, with nepheline (Na2O·Al2O3·SiO2) as major crystalline phase in the temperature interval 700-950ºC and forsterite (2MgO·SiO2) at temperatures above 950ºC.
Glass-ceramic materials of system MgO-Al2O3-SiO2 from rice husk ash / M. I., Martìn; Rincòn, J. M. a.; F., Andreola; L., Barbieri; Bondioli, Federica; I., Lancellotti; M., Romero. - In: BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO. - ISSN 0366-3175. - 50:(2011), pp. 169-176.
Glass-ceramic materials of system MgO-Al2O3-SiO2 from rice husk ash
BONDIOLI, Federica;
2011
Abstract
This wok shows the results of a valorisation study to use rice husk ash as raw material to develop glass-ceramic materials.An original glass has been formulated in the base system MgO-Al2O3-SiO2 with addition of B2O3 and Na2O to facilitate the melting and poring processes. Glass characterization was carried out by determining its chemical composition. Sintering behaviour has been examined by Hot Stage Microscopy (HSM). Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis (DTA). Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction (XRD). Results show that it is possible to use ash rice husk to produce glass-ceramic materials by a sintercrystallizationprocess, with nepheline (Na2O·Al2O3·SiO2) as major crystalline phase in the temperature interval 700-950ºC and forsterite (2MgO·SiO2) at temperatures above 950ºC.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722933
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo