Let (un)n≥0 be a nondegenerate Lucas sequence with characteristic polynomial X2 − aX − b, for some relatively prime integers a and b. For each prime number p and each positive integer n, we give simple formulas for the p-adic valuation νp(un), in terms of νp(n) and the rank of apparition of p in (un)n≥0. This generalizes a previous result of Lengyel on the p-adic valuation of Fibonacci numbers, and also the folkloristic “lifting-the-exponent lemma”.

The p-adic valuation of Lucas sequences / Sanna, Carlo. - In: THE FIBONACCI QUARTERLY. - ISSN 0015-0517. - 54:2(2016), pp. 118-124.

The p-adic valuation of Lucas sequences

Sanna, Carlo
2016

Abstract

Let (un)n≥0 be a nondegenerate Lucas sequence with characteristic polynomial X2 − aX − b, for some relatively prime integers a and b. For each prime number p and each positive integer n, we give simple formulas for the p-adic valuation νp(un), in terms of νp(n) and the rank of apparition of p in (un)n≥0. This generalizes a previous result of Lengyel on the p-adic valuation of Fibonacci numbers, and also the folkloristic “lifting-the-exponent lemma”.
2016
File in questo prodotto:
File Dimensione Formato  
padiclucas.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 259.06 kB
Formato Adobe PDF
259.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Fibonacci quarterly.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722652