Let (un)n≥0 be a nondegenerate Lucas sequence with characteristic polynomial X2 − aX − b, for some relatively prime integers a and b. For each prime number p and each positive integer n, we give simple formulas for the p-adic valuation νp(un), in terms of νp(n) and the rank of apparition of p in (un)n≥0. This generalizes a previous result of Lengyel on the p-adic valuation of Fibonacci numbers, and also the folkloristic “lifting-the-exponent lemma”.
The p-adic valuation of Lucas sequences / Sanna, Carlo. - In: THE FIBONACCI QUARTERLY. - ISSN 0015-0517. - 54:2(2016), pp. 118-124.
The p-adic valuation of Lucas sequences
Sanna, Carlo
2016
Abstract
Let (un)n≥0 be a nondegenerate Lucas sequence with characteristic polynomial X2 − aX − b, for some relatively prime integers a and b. For each prime number p and each positive integer n, we give simple formulas for the p-adic valuation νp(un), in terms of νp(n) and the rank of apparition of p in (un)n≥0. This generalizes a previous result of Lengyel on the p-adic valuation of Fibonacci numbers, and also the folkloristic “lifting-the-exponent lemma”.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
padiclucas.pdf
non disponibili
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
259.06 kB
Formato
Adobe PDF
|
259.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Fibonacci quarterly.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2722652