Given positive integers a1,…,aka1,…,ak, we prove that the set of primes p such that p≢1 mod ai for i=1,…,k admits asymptotic density relative to the set of all primes which is at least ∏ki=1(1−1/φ(ai), where φ is the Euler totient function. This result is similar to the one of Heilbronn and Rohrbach, which says that the set of positive integer n such that n≢0mod ai for i=1,…,ki=1,…,k admits asymptotic density which is at least ∏ki=1(1−1/ai).
A note on primes in certain residue classes / Leonetti, Paolo; Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - STAMPA. - 14:8(2018), pp. 2219-2223.
Titolo: | A note on primes in certain residue classes |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S1793042118501336 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
primesresidues.pdf | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
A note on primes in certain residue classes.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2722602