Let F be an integral linear recurrence, G be an integer-valued polynomial splitting over the rationals, and h be a positive integer. Also, let AF,G,h be the set of all natural numbers n such that gcd(F(n), G(n)) = h. We prove that AF,G,h has a natural density. Moreover, assuming F is non-degenerate and G has no fixed divisors, we show that d(AF,G,1) = 0 if and only if AF,G,1 is finite.

On numbers n with polynomial image coprime with the nth term of a linear recurrence / Mastrostefano, Daniele; Sanna, Carlo. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 99:1(2019), pp. 23-33. [10.1017/S0004972718000606]

On numbers n with polynomial image coprime with the nth term of a linear recurrence

Sanna, Carlo
2019

Abstract

Let F be an integral linear recurrence, G be an integer-valued polynomial splitting over the rationals, and h be a positive integer. Also, let AF,G,h be the set of all natural numbers n such that gcd(F(n), G(n)) = h. We prove that AF,G,h has a natural density. Moreover, assuming F is non-degenerate and G has no fixed divisors, we show that d(AF,G,1) = 0 if and only if AF,G,1 is finite.
File in questo prodotto:
File Dimensione Formato  
MastrostefanoSanna.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 335.55 kB
Formato Adobe PDF
335.55 kB Adobe PDF Visualizza/Apri
On numbers n with polynomial.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722601