For each positive integer k, let Ak be the set of all positive integers n such that gcd(n, Fn) = k, whereFn denotes the nth Fibonacci number. We prove that the asymptotic density of Ak exists and is equal to ∑∞d=1µ(d)lcm(dk,z(dk)) where µ is the Möbius function and z(m) denotes the least positive integer n such that m divides Fn. We also give an effective criterion to establish when the asymptotic density of Ak is zero and we show that thisis the case if and only if Akis empty

The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number / Sanna, Carlo; Tron, Emanuele. - In: INDAGATIONES MATHEMATICAE. - ISSN 0019-3577. - STAMPA. - 29:3(2018), pp. 972-980. [10.1016/j.indag.2018.03.002]

The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number

Sanna, Carlo;
2018

Abstract

For each positive integer k, let Ak be the set of all positive integers n such that gcd(n, Fn) = k, whereFn denotes the nth Fibonacci number. We prove that the asymptotic density of Ak exists and is equal to ∑∞d=1µ(d)lcm(dk,z(dk)) where µ is the Möbius function and z(m) denotes the least positive integer n such that m divides Fn. We also give an effective criterion to establish when the asymptotic density of Ak is zero and we show that thisis the case if and only if Akis empty
File in questo prodotto:
File Dimensione Formato  
SannaTron20170503.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 334.99 kB
Formato Adobe PDF
334.99 kB Adobe PDF Visualizza/Apri
The density of numbers.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 257.35 kB
Formato Adobe PDF
257.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2722600