This work deals with the homogenization of functionals with linear growth in the context of A-quasiconvexity. A representation theorem is proved, where the new integrand function is obtained by solving a cell problem where the coupling between homogenization and the A-free condition plays a crucial role. This result extends some previous work to the linear case, thus allowing for concentration effects.
Homogenization of Functionals with Linear Growth in the Context of $$mathcal A$$ A -quasiconvexity / Matias, José; Morandotti, Marco; Santos, Pedro M.. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - STAMPA. - 72:3(2015), pp. 523-547.
Titolo: | Homogenization of Functionals with Linear Growth in the Context of $$mathcal A$$ A -quasiconvexity |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00245-015-9289-1 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
[007]-2015-Mat-Mor-San[AMO].pdf | Articolo principale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
Mat-Mor-San-revised.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2722527