This work deals with the homogenization of functionals with linear growth in the context of A-quasiconvexity. A representation theorem is proved, where the new integrand function is obtained by solving a cell problem where the coupling between homogenization and the A-free condition plays a crucial role. This result extends some previous work to the linear case, thus allowing for concentration effects.
Homogenization of Functionals with Linear Growth in the Context of $$mathcal A$$ A -quasiconvexity / Matias, José; Morandotti, Marco; Santos, Pedro M.. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - STAMPA. - 72:3(2015), pp. 523-547. [10.1007/s00245-015-9289-1]
Homogenization of Functionals with Linear Growth in the Context of $$mathcal A$$ A -quasiconvexity
Morandotti, Marco;
2015
Abstract
This work deals with the homogenization of functionals with linear growth in the context of A-quasiconvexity. A representation theorem is proved, where the new integrand function is obtained by solving a cell problem where the coupling between homogenization and the A-free condition plays a crucial role. This result extends some previous work to the linear case, thus allowing for concentration effects.File | Dimensione | Formato | |
---|---|---|---|
[007]-2015-Mat-Mor-San[AMO].pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
312.38 kB
Formato
Adobe PDF
|
312.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Mat-Mor-San-revised.pdf
Open Access dal 04/02/2016
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
337.61 kB
Formato
Adobe PDF
|
337.61 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2722527