We consider a Canham−Helfrich−type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham−Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.
Global minimizers for axisymmetric multiphase membranes / Choksi, Rustum; Morandotti, Marco; Veneroni, Marco. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 19:4(2013), pp. 1014-1029.
Titolo: | Global minimizers for axisymmetric multiphase membranes |
Autori: | |
Data di pubblicazione: | 2013 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1051/cocv/2012042 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
[004]-2013-Cho-Mor-Ven[ESAIM-COCV].pdf | Articolo principale | 2a Post-print versione editoriale / Version of Record | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2722524