This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding (friction pendulum system (FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete (RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.

Seismic fragility of structures isolated by single concave sliding devices for different soil conditions / Castaldo, P.; Amendola, G.; Ripani, M.. - In: EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION. - ISSN 1671-3664. - ELETTRONICO. - 17:4(2018), pp. 869-891. [10.1007/s11803-018-0481-6]

Seismic fragility of structures isolated by single concave sliding devices for different soil conditions

Castaldo, P.;
2018

Abstract

This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding (friction pendulum system (FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete (RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.
File in questo prodotto:
File Dimensione Formato  
Castaldo_et_al-2018-Earthquake_Engineering_and_Engineering_Vibration.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2721832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo