Let G = NA,where N is a stratified group and A =R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian L on G. We prove a theorem of Mihlin–H¨ormander type for spectral multipliers of L.The proof of the theorem hinges on a Calder´on–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernelassociated to the sub-Laplacian.
Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups / Martini, Alessio; Ottazzi, Alessandro; Vallarino, Maria. - In: JOURNAL D'ANALYSE MATHEMATIQUE. - ISSN 0021-7670. - STAMPA. - 136:1(2018), pp. 357-397.
Titolo: | Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11854-018-0063-6 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
MOV1.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2721538