Let G = NA,where N is a stratified group and A =R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian L on G. We prove a theorem of Mihlin–H¨ormander type for spectral multipliers of L.The proof of the theorem hinges on a Calder´on–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernelassociated to the sub-Laplacian.
Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups / Martini, Alessio; Ottazzi, Alessandro; Vallarino, Maria. - In: JOURNAL D'ANALYSE MATHEMATIQUE. - ISSN 0021-7670. - STAMPA. - 136:1(2018), pp. 357-397. [10.1007/s11854-018-0063-6]
Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups
Martini, Alessio;Vallarino, Maria
2018
Abstract
Let G = NA,where N is a stratified group and A =R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian L on G. We prove a theorem of Mihlin–H¨ormander type for spectral multipliers of L.The proof of the theorem hinges on a Calder´on–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernelassociated to the sub-Laplacian.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											MOV1.pdf
										
																				
									
										
											 accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										369.95 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								369.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2721538
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
