Let G = NA,where N is a stratified group and A =R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian L on G. We prove a theorem of Mihlin–H¨ormander type for spectral multipliers of L.The proof of the theorem hinges on a Calder´on–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernelassociated to the sub-Laplacian.
Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups / Martini, Alessio; Ottazzi, Alessandro; Vallarino, Maria. - In: JOURNAL D'ANALYSE MATHEMATIQUE. - ISSN 0021-7670. - STAMPA. - 136:1(2018), pp. 357-397. [10.1007/s11854-018-0063-6]
Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups
Martini, Alessio;Vallarino, Maria
2018
Abstract
Let G = NA,where N is a stratified group and A =R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian L on G. We prove a theorem of Mihlin–H¨ormander type for spectral multipliers of L.The proof of the theorem hinges on a Calder´on–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernelassociated to the sub-Laplacian.File | Dimensione | Formato | |
---|---|---|---|
MOV1.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
369.95 kB
Formato
Adobe PDF
|
369.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2721538
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo