We discuss a purely variational approach to the study of a wide class of second order nonhomogeneous dissipative hyperbolic PDEs. Precisely, we focus on the wave-like equations that present also a nonzero source term and a first-order-in-time linear term. The paper carries on the research program initiated in [14], and developed in [15, 21], on the De Giorgi approach to hyperbolic equations.
An existence result for dissipative nonhomogeneous hyperbolic equations via a minimization approach / Tentarelli, Lorenzo; Tilli, Paolo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 266:8(2019), pp. 5185-5208. [10.1016/j.jde.2018.10.023]
An existence result for dissipative nonhomogeneous hyperbolic equations via a minimization approach
Tentarelli Lorenzo;Tilli Paolo
2019
Abstract
We discuss a purely variational approach to the study of a wide class of second order nonhomogeneous dissipative hyperbolic PDEs. Precisely, we focus on the wave-like equations that present also a nonzero source term and a first-order-in-time linear term. The paper carries on the research program initiated in [14], and developed in [15, 21], on the De Giorgi approach to hyperbolic equations.| File | Dimensione | Formato | |
|---|---|---|---|
| Tentarelli L., Tilli P., An existence result for dissipative nonhomogeneous hyperbolic equations via a minimization approach, 2019.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										386.27 kB
									 
										Formato
										Adobe PDF
									 | 386.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| Tentarelli_Tilli_revised_source.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										314.64 kB
									 
										Formato
										Adobe PDF
									 | 314.64 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2716347
			
		
	
	
	
			      	