The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, the incremental strains are used to evaluate the incremental displacements which in turn update the geometry of the deformed structure. The efficacy of the proposed approach to predict large displacements is examined using two case studies involving a cantilevered wing-shaped plate and a clamped plate. The incremental iFEM procedure is demonstrated to be sufficiently accurate in terms of reproducing the correct nonlinear character of the load-displacement curve even when a reduced number of strain sensors is used. Therefore, this approach may have important implications for real-time monitoring of aerospace structures that undergo large displacements.
Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the Inverse Finite Element Method / Tessler, A.; Roy, Rinto; Esposito, Marco; Surace, C.; Gherlone, M.. - In: SHOCK AND VIBRATION. - ISSN 1070-9622. - ELETTRONICO. - 2018:8076085(2018), pp. 1-8. [10.1155/2018/8076085]
Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the Inverse Finite Element Method
Tessler A.;ROY, RINTO;ESPOSITO, MARCO;Surace C.;Gherlone M.
2018
Abstract
The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, the incremental strains are used to evaluate the incremental displacements which in turn update the geometry of the deformed structure. The efficacy of the proposed approach to predict large displacements is examined using two case studies involving a cantilevered wing-shaped plate and a clamped plate. The incremental iFEM procedure is demonstrated to be sufficiently accurate in terms of reproducing the correct nonlinear character of the load-displacement curve even when a reduced number of strain sensors is used. Therefore, this approach may have important implications for real-time monitoring of aerospace structures that undergo large displacements.File | Dimensione | Formato | |
---|---|---|---|
2018_SV_iFEM_Mindlin_Nonlinear.pdf
accesso aperto
Descrizione: Published paper
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2715827
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo