High-speed communication over mutually coupled channels can be severely affected by intersymbol interference (ISI) and crosstalk (XT). Multiple-input multiple-output (MIMO) equalization is known to mitigate both ISI and XT, but requires accurate channel information at the receiver (RX) and/or transmitter (TX), when the channel is stochastic. However, since adjusting the equalization filters to the specific channel realization involves a considerable implementational and computational complexity, it is desirable to keep the equalization filters fixed irrespective of the specific channel realization, especially when the channel variability is relatively small. Therefore, we propose a general MIMO transceiver scheme where the equalization filters depend on the channel statistics rather than the actual channel. More specifically, by considering the time-domain equalization with the fixed linear MIMO pre-equalization and adjustable MIMO decision feedback equalization, the complexity associated with passing channel information from the RX to the TX is avoided, and the computationally intensive and iterative calculations of the fixed pre-equalizer can be performed offline rather than on-chip. The proposed equalization scheme is shown to yield only a small performance degradation compared to fully adjustable equalization schemes, thereby enabling multi-Gbit/s chip-to-chip communication over low-cost electrical interconnects which are prone to manufacturing tolerances.

MIMO Time-Domain Equalization for High-Speed Continuous Transmission under Channel Variability / Bailleul, J.; Jacobs, L.; Manfredi, P.; Vande Ginste, D.; Guenach, M.; Moeneclaey, M.. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. - ISSN 0090-6778. - STAMPA. - 66:8(2018), pp. 3394-3406. [10.1109/TCOMM.2018.2815020]

MIMO Time-Domain Equalization for High-Speed Continuous Transmission under Channel Variability

P. Manfredi;
2018

Abstract

High-speed communication over mutually coupled channels can be severely affected by intersymbol interference (ISI) and crosstalk (XT). Multiple-input multiple-output (MIMO) equalization is known to mitigate both ISI and XT, but requires accurate channel information at the receiver (RX) and/or transmitter (TX), when the channel is stochastic. However, since adjusting the equalization filters to the specific channel realization involves a considerable implementational and computational complexity, it is desirable to keep the equalization filters fixed irrespective of the specific channel realization, especially when the channel variability is relatively small. Therefore, we propose a general MIMO transceiver scheme where the equalization filters depend on the channel statistics rather than the actual channel. More specifically, by considering the time-domain equalization with the fixed linear MIMO pre-equalization and adjustable MIMO decision feedback equalization, the complexity associated with passing channel information from the RX to the TX is avoided, and the computationally intensive and iterative calculations of the fixed pre-equalizer can be performed offline rather than on-chip. The proposed equalization scheme is shown to yield only a small performance degradation compared to fully adjustable equalization schemes, thereby enabling multi-Gbit/s chip-to-chip communication over low-cost electrical interconnects which are prone to manufacturing tolerances.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2715518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo