Fabrication tolerances can significantly degrade the performance of fabricated photonic circuits and process yield. It is essential to include these stochastic uncertainties in the design phase in order to predict the statistical behaviour of a device before the final fabrication. This paper presents a method to build a novel class of stochastic-based building blocks for the preparation of Process Design Kits for the analysis and design of photonic circuits. The proposed design kits directly store the information on the stochastic behaviour of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using these macro-models, only a single deterministic simulation is required to compute the stochastic moments of any arbitrary photonic circuit, without the need of running a large number of time-consuming circuit simulations thereby dramatically improving simulation efficiency. The effectiveness of the proposed approach is verified by means of classical photonic circuit examples with multiple uncertain variables.

Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling / Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Melloni, Andrea. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 26:5(2018), pp. 5894-5907. [10.1364/OE.26.005894]

Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling

Paolo Manfredi;
2018

Abstract

Fabrication tolerances can significantly degrade the performance of fabricated photonic circuits and process yield. It is essential to include these stochastic uncertainties in the design phase in order to predict the statistical behaviour of a device before the final fabrication. This paper presents a method to build a novel class of stochastic-based building blocks for the preparation of Process Design Kits for the analysis and design of photonic circuits. The proposed design kits directly store the information on the stochastic behaviour of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using these macro-models, only a single deterministic simulation is required to compute the stochastic moments of any arbitrary photonic circuit, without the need of running a large number of time-consuming circuit simulations thereby dramatically improving simulation efficiency. The effectiveness of the proposed approach is verified by means of classical photonic circuit examples with multiple uncertain variables.
2018
File in questo prodotto:
File Dimensione Formato  
jnl-2018-OE.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2715517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo